Target アクティビティタイプ

Adobe Target の様々なアクティビティタイプについて説明するインタラクティブな PDF をダウンロードします。

NOTE
最適なエクスペリエンスを実現するには、インタラクティブな Adobe Target アクティビティガイド PDF をダウンロードしてください。他の人と共有することもできます。
この記事には、Recommendations のアクティビティに関する情報は含まれていません。 ただし、A/B Test、Auto-Allocate、Auto-Target、Experience Targeting (XT)アクティビティ内にレコメンデーションを含めることができます。 詳しくは、オファーとしての Recommendations を参照してください。この機能を使用するには、Target Premium ライセンスが必要です。

各アクティビティの機能 section_4ECAACC68723402EB3649033190E1BBC

アクティビティタイプ
詳細

手動 A/B Test

アイコン

複数のエクスペリエンスを比較して、事前に指定したテスト期間内で最もコンバージョンが向上したエクスペリエンスを確認します。

詳しくは、A/B テストを参照してください。

Auto-Allocate

アイコン自動配分

複数のエクスペリエンスの中から勝者を特定し、その勝者エクスペリエンスにトラフィックを配分し直すことで、テストと学習を続けながらコンバージョンを増やしていきます。

詳しくは、自動配分を参照してください。

Auto-Target

アイコン AT

高度な機械学習を使用してコンテンツをパーソナライズし、コンバージョンを促進します。その際は、マーケターが定義した高パフォーマンスのエクスペリエンスを複数特定したうえで、個々の顧客プロファイルや同様の訪問者の過去の行動を基にして、各訪問者に詳細にカスタマイズしたエクスペリエンスを配信します。

詳しくは、パーソナライズされたエクスペリエンスの自動ターゲットを参照してください。

Automated Personalization (AP)

アイコン AP

高度な機械学習を使用して特定のオファーやメッセージを組み合わせて、個々の顧客プロファイルに合わせて各訪問者に様々なオファーのバリエーションを表示しながら、コンテンツをパーソナライズしてコンバージョンを促進していきます。

詳しくは、Automated Personalization を参照してください。

Multivariate Test (MVT)

アイコン MVT

ページ上の要素のオファーの組み合わせを比較し、特定のオーディエンスに対して最も効果が高い組み合わせを確認します。事前に指定したテスト期間内で、コンバージョンを最も増やすことができたページ要素を見極めることもできます。

詳しくは、多変量分析テストを参照してください。

エクスペリエンスのターゲット設定(XT)

アイコン XT

マーケターが定義した一連のルールや条件を基にして、特定のオーディエンスにコンテンツを配信します。

詳しくは、エクスペリエンスのターゲット設定を参照してください。

このタイプのアクティビティを使用する理由 section_46A70DD7CE3448749E635DDF5EAFC131

アクティビティタイプ
理由
手動 A/B Test
高度に制御されたテストで、トラフィックを測定し、ルールではなく割合で分割します。テストデータを分析してオーディエンスに関するインサイトを抽出し、どのエクスペリエンスが最も効果的か見極めることができます。
Auto-Allocate
勝者エクスペリエンスを特定してトラフィックの配分を調整し、できるだけ早く訪問者に勝者エクスペリエンスを配信することで、コンバージョン率をより迅速に高められるよう支援します。
Auto-Target
複数のエクスペリエンスの中から勝者を見つけ出し、特定の訪問者に最適なエクスペリエンスを配信します。特定の期間、特定のエクスペリエンスを対象にアルゴリズムが訪問者のコンバージョンの傾向を推測するので、訪問者の興味の変化に合わせてターゲット設定が調節されていきます。
Automated Personalization (AP)
(単一のページまたは複数のページの要素を対象に、作成または事前定義された)一連のオファーをパーソナライズし、特定の訪問者を引き付けるうえで最も効果的な組み合わせを配信します。
Multivariate Testing (MVT)
複数の要素に複数のオファーを表示し、結果として得られる一意のエクスペリエンスを特定の目標に対して同時にテストする方法です。最も効果が高い要素のバリエーションを判断できます。「MVT」アクティビティでは、訪問者のインタラクションに最大のプラスまたはマイナスの影響を与える要素を明らかにすることもできます。
Experience Targeting (XT)
定義した一連の配分ルールに基づいて、特定のコンテンツのターゲットを特定のオーディエンスに設定する方法です。

アクティビティのタイプを使用する必要があるマーケターの種類 section_A843D663D3E543FFB1A594266B560395

アクティビティタイプ
マーケティング担当者
手動 A/B Test

統計に関する知識が豊富。

結果を分析する際に、テスト期間が終わるまで待つことができる。

Auto-Allocate

時間に余裕がない。

最適なエクスペリエンスを迅速に特定し、配信する必要がある。

テストの実施途中に結果を「垣間見」たい。

Auto-Target

効果的なエクスペリエンスが複数ある。

動的に変化するプロファイルに合わせて、特定の訪問者に最適なタイミングでエクスペリエンスを配信したい。

Automated Personalization (AP)

1 つ以上のオファーがある。

様々な独自のプロファイルや行動を考慮し、特定の訪問者に合わせて効果的にパーソナライズされたエクスペリエンスを創出できるオファーの組み合わせを作成したい。

Multivariate Testing (MVT)

統計に関する知識が豊富。

1 つ以上のオファーがある。

ページ要素のインタラクションに関連するコンバージョンの傾向を分析したい。

Experience Targeting (XT)
特定のエクスペリエンスやコンテンツの一部を、特定のオーディエンスに配信する必要がある。

統計面の詳細 section_22CF2D07DB054505AB5EC702B99A5BB0

アクティビティタイプ
詳細
手動 A/B Test
このテストでは、各対抗エクスペリエンスとコントロールエクスペリエンスを比較したうえで、全エクスペリエンスのパフォーマンスのランキングを決め、コントロールエクスペリエンスとの比較で勝者エクスペリエンスと敗者エクスペリエンスを特定します。
Auto-Allocate
このテストでは、すぐに真の勝者が統計的に保証され、コンバージョンに至る可能性が高いオーディエンスに、その勝者のエクスペリエンスがより多く配信されるようになります。
Auto-Target
最適化メカニズムでは、時間の経過と共に上昇率の増減を示し、どのエクスペリエンスにどの訪問者を配信するかを事前に決定することで、各エクスペリエンスの関連オーディエンスを特定します。最適化メカニズムは、コンバージョン、セグメント、パラメーターおよびプロファイルスクリプトによって通知されます。その段階で、上昇率とコンバージョン率を高めるために、どのアルゴリズムを利用するかが自動的に選択されます。
Automated Personalization (AP)
最適化メカニズムによって、新規訪問者の行動や、類似する訪問者の過去の行動などに基づき、どのエクスペリエンスをどの訪問者に配信するかが常に調節され、オファーのパフォーマンスが同時並行で配信されているコントロール母集団と比較されます。
Multivariate Testing (MVT)
特定の要素がコンバージョンに与える相対的な影響を把握するのに役立ちます。
Experience Targeting (XT)
この手法では、特定のエクスペリエンスか、コンテンツの特定部分のターゲットを特定のオーディエンスに設定するルールを定義します。顧客はエクスペリエンスレベルで変更を加えることができます。

利点と注意点 section_56C46ABEF7B945DDA0C1E6D714377123

アクティビティタイプ
利点
注意点
手動 A/B Test
A/B テストを利用すると、最高のパフォーマンスを発揮したエクスペリエンスだけでなく、各エクスペリエンスのパフォーマンスを詳細に把握することができます。

ま A/B Test、サンプルサイズに達する前にテスト結果を調べると、不正確な結果に頼るリスクがあります(先に「覗き見」することはできません)。

Auto-Allocate とは異なり、A/B テストでは、一部のエクスペリエンスが他のエクスペリエンスよりもパフォーマンスが優れていることを認識した後でも、トラフィック配分は固定されたままです。

A/B Test アクティビティのベストプラクティスについては、A/B テストを実行すべき期間および A/B テストによくある 10 の落とし穴とその回避方法を参照してください。

Auto-Allocate
通常の A/B テスト Auto-Allocate は、手動の A/B テストよりも全体的なコンバージョン率が高いので、コストを削減できます。 コンバージョン率が高いのは、Auto-Allocate がプッシュするトラフィックが最もパフォーマンスの高いエクスペリエンスに向かうからです。つまり、その勝者エクスペリエンスのメリットは、テスト期間の終わりよりも早く実感できます(ピーク可能)。

Auto-Allocate は勝者を識別しますが、敗者を区別しません。 各エクスペリエンスのパフォーマンスを把握したい場合は、A/B テストの方が適しています。

Auto-Allocate 機能は、「カウントを増分、アクティビティでユーザーを保持」という 1 つの高度な指標設定でのみ機能します。 リピートコンバージョンをカウントしたくない場合は、A/B テストを使用することをお勧めします。

Auto-Target
Auto-Target を使用すると、機械学習は、複数ページのエクスペリエンスを含む、あらゆる種類のエクスペリエンスに適用できます。 Auto-Target アクティビティでも、使い慣れた A/B テストワークフローを使用して、Automated Personalization の値を取得できます。
Auto-Target の場合、オファーのコンテンツを頻繁に、または頻繁に変更する場合、アルゴリズムが学習内容を活用し、そのコンテンツを適切な訪問者に提供するには、変更のたびに十分な時間が必要です。
Automated Personalization (AP)
Automated Personalization を使用すると、すべてのオファーを 1 か所で収集でき、アルゴリズムによってオファーの最適な組み合わせが決定されます。 個々のエクスペリエンスを指定したり作成したりする必要はありません。Automated Personalization では、Auto-Target と同じ機械学習アルゴリズムを使用します。

複数のオファーを組み合わせる場合は、組み合わせ爆発が発生するので、膨大な量のトラフィックが必要になります。Automated Personalization のアルゴリズムは多くの要因を考慮するので、最もトラフィック量が必要になります。

Analytics for Target (A4T)のレポートを使用で Automated Personalization ません。

Multivariate Testing (MVT)
Multivariate Testing を使用すると、複数の要素を同時にテストできます。

Multivariate Test は時間がかかり、複数の変数が作用するので、必ずしも自信を持って勝者エクスペリエンスを生み出すわけではありません。

多くの場合、テストの完了に必要なトラフィック量を確保することが課題になります。すべて Multivariate Test 実験は完全に要因によるものなので、一度に変更する要素が多すぎると、テストが必要な組み合わせを素早く追加できます。

トラフィックがかなり多いサイトであっても、25 を超える組み合わせを含むテストは、妥当な時間内での完了が困難になる場合があります。

Experience Targeting (XT)

Experience Targeting を使用すると、アクティビティの結果から推定されるインサイトに基づいてすばやくアクションを実行できます。

例えば、挑戦者がコントロールに勝っていない A/B テストを実行し、結果が特定の訪問者セグメントが挑戦者を使用した場合と比較して 4 倍のコンバージョンを示している場合、Experience Targeting を使用して挑戦者エクスペリエンスをその特定のセグメントに誘導できます。

Experience Targeting では、複数のオーディエンスをまたいだ、エクスペリエンスの割合の分割を制御することはできません。
recommendation-more-help
3d9ad939-5908-4b30-aac1-a4ad253cd654