Critérios no Adobe Target Recommendations controlar o conteúdo do Recommendations atividades. Crie critérios para mostrar as recomendações que são mais apropriadas para sua atividade. Esses critérios usam as ações do visitante para determinar qual conteúdo ou produtos exibir.
As seções a seguir explicam como criar um novo critério.
Existem vários meios de alcançar a tela Criar novos critérios. Algumas opções de tela variam de acordo com o modo que você chegar na tela.
As etapas a seguir pressupõem que você acesse o Criar novos critérios usando o primeiro método: a variável Recommendations > Critérios tela da biblioteca.
Clique em Recommendations > Critérios.
Clique em Criar critérios > Criar critérios.
Configure as informações nas seções a seguir.
Digite um Nome dos critérios.
Este é o nome "interno" usado para descrever o critério. Por exemplo, você pode chamar seu critério de "Produtos com margem mais alta", mas não quer que o título seja exibido publicamente. Veja a próxima etapa para definir o título aberto ao público.
Insira um Título de exibição aberto ao público que irá aparecer na página para qualquer recomendação que use este critério.
Por exemplo, você pode decidir exibir "Pessoas que viram isto também viram aquilo" ou "Produtos parecidos" quando usar este critério para exibir recomendações.
Digite uma breve Descrição dos critérios.
A descrição deve ajudar a identificar o critério e pode incluir informações sobre o propósito do critério.
Selecione um negócio vertical com base nas metas da sua atividade de recomendações.
Vertical do setor | Meta |
---|---|
Varejo/Comércio eletrônico | Conversão resultando em compra |
Geração de lead/B2B/Serviços financeiros | Conversão sem compra |
Mídia/Publicação | Envolvimento |
Outras opções de critério irão mudar de acordo com o negócio vertical que você selecionar.
Selecione um Tipo de página.
Você pode selecionar vários tipos de página.
Juntos, o negócio vertical e tipos de página são usados para categorizar seu critério salvo, tornando mais fácil o reuso de critérios para outras atividades do Recommendations.
Selecione um Tipo de algoritmo e Algoritmo:
Tipo de algoritmo | Quando usar | Algoritmos disponíveis |
---|---|---|
Baseado em carrinho | Faça recomendações com base no conteúdo do carrinho do usuário. |
|
Baseado em popularidade | Faça recomendações com base na popularidade geral de um item em todo o site ou na popularidade de itens na categoria, marca, gênero e assim por diante favoritas ou mais visualizadas de um usuário. |
|
Baseado em Item | Fazer recomendações com base na localização de itens semelhantes a um item que o usuário está visualizando atualmente ou que visualizou recentemente. |
|
Baseado em usuário | Faça recomendações com base no comportamento do usuário. |
|
Critérios personalizados | Faça recomendações com base em um arquivo personalizado que você fez upload. |
|
Se você selecionar Itens/ Mídia com atributos similares, você terá a opção de definir regras de similaridade de conteúdo.
Conforme necessário, selecione um Atributo de item e Atributo de perfil a corresponder, um Chave de recomendação, Chave do filtro, e/ou Métrica do Analytics para configurar o algoritmo.
As opções de configuração de algoritmo restantes variam dependendo do algoritmo selecionado. Para concluir a configuração do algoritmo, selecione um Chave de recomendação, Chave do filtro, Base de co-ocorrência, Métrica do Analytics, e/ou Atributo de item e Atributo de perfil a corresponder.
Para obter mais informações sobre a escolha de um Chave de recomendação, consulte Basear a recomendação em uma chave de recomendação.
Selecione o desejado Fonte de dados comportamentais: Adobe Target ou Analytics.
A variável Fonte de dados comportamentais é exibida somente se sua implementação usar Analytics for Target (A4T).
Se você escolher Analytics, selecione o conjunto de relatórios desejado.
Se os critérios usarem Adobe Analytics como a fonte de dados comportamentais, depois de criada, o tempo para a disponibilidade dos critérios depende de o conjunto de relatórios selecionado e a janela de lookback terem sido usados para quaisquer outros critérios, conforme explicado abaixo:
Para obter mais informações, consulte Usar o Adobe Analytics com o Target Recommendations.
Defina o Janela de pesquisa para determinar o intervalo de tempo de dados históricos disponíveis do comportamento do usuário, ao determinar quais recomendações serão mostradas. Esta opção está disponível para todos os algoritmos, com exceção dos Itens com Atributos similares e Algoritmos personalizados.
Se seu site tiver muito tráfego e os comportamentos mudarem frequentemente, escolha uma janela de dados mais curta. Uma janela menor permite que as Recommendations sejam mais responsivas às alterações no mercado e em seu negócio. Por exemplo, uma janela menor significa que as Recommendations irão detectar alterações no comportamento do visitante conforme seus visitantes começam a fazer compras sazonais, tais como compras de volta às aulas ou de Natal, e irá recomendar itens apropriados para estas temporadas de compras.
Caso não tenha muitos dados ou o comportamento do visitante não seja alterado com frequência, você pode selecionar uma janela maior. No entanto, para muitos sites, uma janela menor resulta em recomendações de maior qualidade.
Os intervalos de dados disponíveis são:
Opção Janela de pesquisa | Frequência atualizada (exibida ao passar o mouse) | Algoritmos compatíveis |
---|---|---|
Seis horas | O algoritmo é executado a cada 3-6 horas | Baseado em popularidade algoritmos quando o Fonte de dados comportamentais é Adobe Target |
Um dia | O algoritmo é executado a cada 12-24 horas | Baseado em popularidade algoritmos |
Dois dias | O algoritmo é executado a cada 12-24 horas |
|
Uma semana | O algoritmo é executado a cada 24-48 horas |
|
Duas semanas | O algoritmo é executado a cada 24-48 horas |
|
Um mês (30 dias) | O algoritmo é executado a cada 24-48 horas |
|
Dois meses (61 dias) | O algoritmo é executado a cada 24-48 horas |
|
Conteúdo de backup as regras determinam o que acontecerá se o número de itens recomendados não preencher o design de recomendações. É possível que Recommendations critérios para retornar menos recomendações do que o exigido pelo design. Como exemplo, se seu design tiver slots para quatro itens, mas seus critérios fizerem com que apenas dois itens sejam recomendados, você pode deixar os slots restantes vazios, pode usar recomendações de backup para preencher os slots extras ou pode optar por não exibir recomendações.
(Opcional) Deslize o Renderização de design parcial alterne para a posição "ligado".
O máximo possível de slots será preenchido, mas o modelo de design pode incluir espaço em branco para os slots restantes. Se essa opção estiver desativada e não houver conteúdo suficiente para preencher todos os slots disponíveis, as recomendações não serão fornecidas e o conteúdo padrão será exibido.
Ative essa opção se desejar que as recomendações sejam atendidas com slots em branco. Use recomendações de backup se quiser que os slots de recomendação sejam preenchidos com conteúdo com base em seus critérios, com slots vazios preenchidos com conteúdo semelhante ou popular do site, conforme explicado na próxima etapa.
(Opcional) Deslize o Mostrar conteúdo do backup alterne para a posição "ligado".
Preencha todos os espaços vazios restantes no design com uma seleção aleatória dos produtos mais visualizados em todo o site.
O uso de recomendações de backup garante que seu design de recomendação preencha todos os slots disponíveis. Suponha que você tenha um design 4 x 1, conforme ilustrado abaixo:
Suponha que seus critérios façam com que apenas dois itens sejam recomendados. Se você habilitar a opção Renderização de design parcial os dois primeiros slots estarão preenchidos, mas os dois slots restantes permanecerão vazios. No entanto, se você ativar a opção Mostrar Recommendations de backup , os dois primeiros slots serão preenchidos com base nos critérios especificados e os dois slots restantes serão preenchidos com base nas recomendações de backup.
A matriz a seguir mostra o resultado que você observará ao usar o Renderização de design parcial e Conteúdo de backup opções:
Renderização parcial de design | Conteúdo de backup | Resultado |
---|---|---|
Desativado | Desativado | Se forem retornadas menos recomendações do que o design solicita, o design das recomendações será substituído pelo conteúdo padrão, e nenhuma recomendação será exibida. |
Ativado | Desativado | O design é renderizado, mas pode incluir um espaço em branco se forem retornadas menos recomendações do que o design solicita. |
Ativado | Ativado | As recomendações de backup preencherão os "slots" de design disponíveis, renderizando totalmente o design. Se a aplicação de regras de inclusão às recomendações de backup limitar o número de recomendações de backup qualificadas ao ponto de não ser possível preencher o design, o design será parcialmente renderizado. Se os critérios não retornarem nenhuma recomendação e as regras de inclusão limitarem as recomendações de backup a zero, o design será substituído pelo conteúdo padrão. |
Desativado | Ativado | As recomendações de backup preencherão os "slots" de design disponíveis, renderizando totalmente o design. Se a aplicação de regras de inclusão às recomendações de backup limitar o número de recomendações de backup qualificadas ao ponto de não ser possível preencher o design, o design será substituído pelo conteúdo padrão, e nenhuma recomendação será exibida. |
Para obter mais informações, consulte Usar uma recomendação de backup.
(Condicional) Se você selecionou Mostrar conteúdo do backup na etapa anterior, é possível ativar Aplicar regras de inclusão às recomendações de backup.
As regras de inclusão determinam quais itens são incluídos em suas recomendações. As opções disponíveis dependem do seu negócio vertical.
Para obter mais detalhes, consulte Especificar regras de inclusão abaixo.
Use as regras de Similaridade de conteúdo para fazer recomendações baseadas em atributos de item ou mídia.
Se você selecionou Baseado em Item/ Mídia com atributos similares Como seu Tipo de algoritmo e Algoritmo, você tem a opção de definir regras de similaridade de conteúdo.
Similaridade de conteúdo compara palavras-chave de atributo do item e faz recomendações baseadas em quantas palavras-chave itens diferentes têm em comum. Recommendations baseadas em similaridade de conteúdo não requerem dados antigos para providenciar melhores resultados.
Usar similaridade de conteúdo para gerar recomendações é especialmente eficaz para novos itens, que provavelmente não aparecem em recomendações usando pessoas que viram isto, viram aquilo e outras lógicas baseadas em comportamento anterior. Você também pode usar similaridade de conteúdo para gerar recomendações úteis para novos visitantes, que não possuem compras antigas ou outros dados de histórico.
Ao selecionar Baseado em Item/ Mídia com atributos similares, você tem a opção de criar regras para aumentar ou diminuir a importância de atributos de item específicos em determinadas recomendações. Para itens como livros, você pode querer ampliar a importância de atributos como gênero, autor, série, e assim em diante, para recomendar livros similares.
Como a similaridade de conteúdo usa palavras-chave para comparar itens, alguns atributos, como mensagem ou descrição, podem introduzir "ruído" à comparação. Você pode criar regras para ignorar estes atributos.
Por padrão, todos atributos são definidos como Linha de base. Você não precisa criar uma regra a não ser que queira alterar esta configuração.
O algoritmo de similaridade de conteúdo pode usar amostragem aleatória ao calcular a similaridade entre itens. Como resultado, as classificações de similaridade entre itens podem variar entre execuções de algoritmo.
Várias opções ajudam a limitar os itens que são exibidos em suas recomendações. Você pode usar regras de inclusão ao criar critérios ou promoções.
Regras de inclusão são opcionais; no entanto, configurar esses detalhes oferece mais controle sobre os itens que aparecem em suas recomendações. Cada detalhe que você configura limita ainda mais os critérios de exibição.
Por exemplo, você pode escolher exibir apenas sapatos femininos que tenham um inventário de mais de 50 e o preço entre $ 25 e $ 45. Também é possível pesar cada atributo para que os itens mais importantes para sua empresa tenham mais chances de aparecer.
Como outro exemplo, você pode escolher exibir vagas de emprego para visitantes que acessem seu site somente de certas cidades e que tenham os graus acadêmicos necessários.
Opções de regras de inclusão variam pelo negócio vertical. Por padrão, regras de inclusão são aplicadas em recomendações de backup.
Você deve usar regras de inclusão com cuidado. Ela é útil se, por exemplo, sua organização tem regras que exijam que uma marca não seja recomendada se outra está sendo mostrada. No entanto, há um custo de oportunidade para este recurso. Você possivelmente perderia uma porcentagem de elevação ao restringir a exibição de alguns itens, quando, normalmente, seriam exibidos pelos critérios de atividade.
Regras de inclusão são unidas por um E. Todas as regras devem ser cumpridas para incluir um item em uma recomendação.
Para criar uma regra de inclusão simples, como mencionado anteriormente, para exibir apenas sapatos femininos que tenham um inventário de mais de 50 e o preço entre $ 25 e $ 45, siga os seguintes passos:
(Condicional) Deslize o Permitir que itens adquiridos recentemente sejam recomendados? alterne para a posição "ligado".
Esta configuração é baseada no productPurchasedId
. O comportamento padrão é não recomendar itens comprados anteriormente. Na maioria dos casos, você não deseja promover itens que um cliente comprou recentemente. Ela é útil se você vende itens que pessoas geralmente compram apenas uma vez, como caiaques. Se você vender itens que as pessoas voltam a comprar repetidamente, como shampoo ou outros itens pessoais, você deve ativar essa opção.
Defina um intervalo de preço para os produtos que deseja recomendar.
Defina o inventário mínimo para os produtos que deseja recomendar.
Configure a recomendação para que exiba itens que satisfaçam os critérios.
Você pode especificar que os itens sejam incluídos apenas quando um dos atributos na lista atender ou não corresponder a uma ou mais condições especificadas.
Os avaliadores disponíveis dependem do valor que você escolheu na primeira lista suspensa. Você pode listar vários itens. Esses itens são avaliados com OR.
Regras múltiplas são combinadas com um AND.
Essa opção limita os itens exibidos na recomendação. Isso não afeta em quais páginas a recomendação é exibida. Para limitar onde a recomendação é exibida, selecione as páginas no compositor de experiência.
Para obter mais informações, consulte Uso das regras de inclusão estática e dinâmica.
É possível adicionar várias regras para "empurrar" o algoritmo com base em informações importantes ou metadados sobre o catálogo de conteúdo para que determinados itens tenham mais probabilidade de ser exibidos.
Por exemplo, você pode aplicar um peso maior a itens em liquidação, para que apareçam com mais frequência na recomendação. Itens que não estão em liquidação não são totalmente excluídos, mas aparecem com menos frequência. Podem ser aplicados muitos pesos ao mesmo algoritmo, e os pesos podem ser testados no tráfego dividido na recomendação.
Escolha um valor.
O valor determina o tipo do item que é mais provável de ser exibido, baseado em um de vários critérios disponíveis.
Escolha um avaliador.
Insira a palavra-chave para completar os atributos da regra.
Por exemplo, a regra completa pode ser "Categoria contém sapatos de subsequência de caracteres".
Selecione o peso a ser designado à regra.
Opções variam de 0 a 100 em incrementos de 25.
Adicione regras adicionais, se desejar.
Ao terminar, clique em Salvar.
Se você está criando uma nova atividade do Recommendations ou editando uma atividade existente, a caixa de seleção Salvar critérios para mais tarde será selecionada por padrão. Se você não quer usar os critérios em outras atividades, desmarque a caixa de seleção antes de salvar.
Este vídeo contém as seguintes informações: