Default Guardrails for Real-time Customer Profile data

Adobe Experience Platform enables you to deliver personalized cross-channel experiences based on behavioral insights and customer attributes in the form of Real-time Customer Profiles. To support this new approach to profiles, Experience Platform uses a highly denormalized hybrid data model that differs from the traditional relational data model.

This document provides default use and rate limits to help you model your Profile data for optimal system performance. When reviewing the following guardrails, it is assumed that you have modeled the data correctly. If you have questions on how to model your data, please contact your customer service representative.

NOTE

Most customers do not exceed these default limits. If you would like to learn about custom limits, please contact your customer care representative.

Getting started

The following Experience Platform services are involved with modeling Real-time Customer Profile data:

  • Real-time Customer Profile: Create unified consumer profiles using data from multiple sources.
  • Identities: Bridge identities from disparate data sources as they are ingested into Platform.
  • Schemas: Experience Data Model (XDM) schemas are the standardized framework by which Platform organizes customer experience data.
  • Segments: The segmentation engine within Platform is used to create segments from your customer profiles based on customer behaviors and attributes.

Limit types

There are two types of default limits within this document:

  • Soft limit: It is possible to go beyond a soft limit, however soft limits provide a recommended guideline for system performance.

  • Hard limit: A hard limit provides an absolute maximum.

NOTE

The limits outlined in this document are constantly being improved. Please check back regularly for updates. If you are interested in learning about custom limits, please contact your customer care representative.

Data model limits

The following guardrails provide recommended limits when modeling Real-time Customer Profile data. To learn more about primary entities and dimension entities, see the section on entity types in the Appendix.

Primary entity guardrails

Guardrail Limit Limit Type Description
XDM Individual Profile class datasets 20 Soft A maximum of 20 datasets that leverage the XDM Individual Profile class is recommended.
XDM ExperienceEvent class datasets 20 Soft A maximum of 20 datasets that leverage the XDM ExperienceEvent class is recommended.
Adobe Analytics report suite datasets enabled for Profile 1 Soft A maximum of one (1) Analytics report suite dataset should be enabled for Profile. Attempting to enable multiple Analytics report suite datasets for Profile may have unintended consequences for data quality. For more information, see the section on Adobe Analytics datasets in the Appendix.
Multi-entity relationships 5 Soft A maximum of 5 multi-entity relationships defined between primary entities and dimension entities is recommended. Additional relationship mappings should not be made until an existing relationship is removed or disabled.
JSON depth for ID field used in multi-entity relationship 4 Soft The recommended maximum JSON depth for an ID field used in multi-entity relationships is 4. This means that in a highly nested schema, fields that are nested more than 4 levels deep should not be used as an ID field in a relationship.
Array cardinality in a profile fragment <=500 Soft The optimal array cardinality in a profile fragment (time-independent data) is <=500.
Array cardinality in ExperienceEvent <=10 Soft The optimal array cardinality in an ExperienceEvent (time series data) is <=10.
Identity count for individual profile Identity Graph 50 Hard The maximum number of identities in an Identity Graph for an individual profile is 50. Any profiles with more than 50 identities are excluded from segmentation, exports, and lookups.

Dimension entity guardrails

Guardrail Limit Limit Type Description
No time-series data permitted for non-XDM Individual Profile entities 0 Hard Time-series data is not permitted for non-XDM Individual Profile entities in Profile Service. If a time-series dataset is associated with a non-XDM Individual Profile ID, the dataset should not be enabled for Profile.
No nested relationships 0 Soft You should not create a relationship between two non-XDM Individual Profile schemas. The ability to create relationships is not recommended for any schemas which are not part of the Profile union schema.
JSON depth for primary ID field 4 Soft The recommended maximum JSON depth for the primary ID field is 4. This means that in a highly nested schema, you should not select a field as a primary ID if it is nested more than 4 levels deep. A field that is on the 4th nested level can be used as a primary ID.

Data size limits

The following guardrails refer to data size and provide recommended limits for data that can be ingested, stored, and queried as intended. To learn more about primary entities and dimension entities, see the section on entity types in the Appendix.

NOTE

Data size is measured as uncompressed data in JSON at time of ingestion.

Primary entity guardrails

Guardrail Limit Limit Type Description
Maximum ExperienceEvent size 10KB Hard The maximum size of an event is 10KB. Ingestion will continue, however any events larger than 10KB will be dropped.
Maximum profile record size 100KB Hard The maximum size of a profile record is 100KB. Ingestion will continue, however profile records larger than 100KB will be dropped.
Maximum profile fragment size 50MB Hard The maximum size of a single profile fragment is 50MB. Segmentation, exports, and lookups may fail for any profile fragment that is larger than 50MB.
Maximum profile storage size 50MB Soft The maximum size of a stored profile is 50MB. Adding new profile fragments into a profile that is larger than 50MB will affect system performance. For example, a profile could contain a single fragment that is 50MB or it could contain multiple fragments across multiple datasets with a combined total size of 50MB. Attempting to store a profile with a single fragment larger than 50MB, or multiple fragments that total more than 50MB in combined size, will affect system performance.
Number of Profile or ExperienceEvent batches ingested per day 90 Soft The maximum number of Profile or ExperienceEvent batches ingested per day is 90. This means that the combined total of Profile and ExperienceEvent batches ingested each day cannot exceed 90. Ingesting additional batches will affect system performance.

Dimension entity guardrails

Guardrail Limit Limit Type Description
Total size for all dimensional entities 5GB Soft The recommended total size for all dimensional entities is 5GB. Ingesting large dimension entities may affect system performance. For example, attempting to load a 10GB product catalog as a dimension entity is not recommended.
Datasets per dimensional entity schema 5 Soft A maximum of 5 datasets associated with each dimensional entity schema is recommended. For example, if you create a schema for “products” and add five contributing datasets, you should not create a sixth dataset tied to the products schema.
Dimension entity batches ingested per day 4 per entity Soft The recommended maximum number of dimension entity batches ingested per day is 4 per entity. For example, you could ingest updates to a product catalog up to 4 times per day. Ingesting additional dimension entity batches for the same entity may affect system performance.

Segmentation guardrails

The guardrails outlined in this section refer to the number and nature of segments an organization can create within Experience Platform, as well as mapping and activating segments to destinations.

Guardrail Limit Limit Type Description
Segments per sandbox 10,000 Soft An organization can have more than 10,000 segments in total, as long as there are less than 10,000 segments in each individual sandbox. Attempting to create additional segments may affect system performance.
Streaming segments per sandbox 500 Soft An organization can have more than 500 streaming segments in total, as long as there are less than 500 streaming segments in each individual sandbox. Attempting to create additional streaming segments may affect system performance.
Batch segments per sandbox 10,000 Soft An organization can have more than 10,000 batch segments in total, as long as there are less than 10,000 batch segments in each individual sandbox. Attempting to create additional batch segments may affect system performance.

Appendix

This section provides additional details for the limits in this document.

Entity types

The Profile store data model consists of two core entity types:

  • Primary entity: A primary entity, or profile entity, merges data together to form a “single source of truth” for an individual. This unified data is represented using what is known as a “union view”. A union view aggregates the fields of all schemas that implement the same class into a single union schema. The union schema for Real-time Customer Profile is a denormalized hybrid data model that acts as a container for all profile attributes and behavioral events.

    Time-independent attributes, also known as “record data” are modeled using XDM Individual Profile, while time-series data, also known as “event data” is modeled using XDM ExperienceEvent. As record and time-series data is ingested in Adobe Experience Platform, it triggers Real-time Customer Profile to begin ingesting data that has been enabled for its use. The more interactions and details that are ingested, the more robust individual profiles become.

  • Dimension entity: While the Profile data store maintaining profile data is not a relational store, Profile permits integration with small dimension entities in order to create segments in a simplified and intuitive manner. This integration is known as multi-entity segmentation. Your organization may also define XDM classes to describe things other than individuals, such as stores, products, or properties. These non-XDM Individual Profile schemas are known as “dimension entities” and do not contain time-series data. Dimension entities provide lookup data which aids and simplifies multi-entity segment definitions and must be small enough that the segmentation engine can load the entire data set into memory for optimal processing (fast point lookup).

Profile fragments

In this document, there are several guardrails that refer to “profile fragments.” In Experience Platform, multiple profile fragments are merged together to form the Real-time Customer Profile. Each fragment represents a unique primary identity and the corresponding record or event data for that ID within a given dataset. To learn more about profile fragments, refer to the Profile overview.

Merge policies

When bringing data together from multiple sources, merge policies are the rules that Platform uses to determine how data will be prioritized and what data will be combined to create that unified view. For example, if a customer interacts with your brand across several channels, your organization will have multiple profile fragments related to that single customer appearing in multiple datasets. When these fragments are ingested into Platform, they are merged together in order to create a single profile for that customer. When the data from multiple sources conflicts the merge policy determines which information to include in the profile for the individual. To learn more about merge policies, begin by reading the merge policies overview.

Adobe Analytics report suite datasets in Platform

A maximum of one (1) Adobe Analytics report suite dataset should be enabled for Profile. This is a soft limit, meaning that you are able to enable more than one Analytics dataset for Profile, but it is not recommended as it may have unintended consequences for your data. This is due to the differences between Experience Data Model (XDM) schemas, which provide the semantic structure for data in Experience Platform and allow for consistency in data interpretation, and the customizable nature of eVars and conversion variables in Adobe Analytics.

For example, in Adobe Analytics a single organization may have multiple report suites. If report suite A designates eVar 4 as “internal search term” and report suite B designates eVar 4 as “referring domain”, these values will both be ingested into the same field in Profile, causing confusion and degrading data quality.

On this page