Importe uma fórmula em pacote usando a API do Sensei Machine Learning

NOTE
O Data Science Workspace não está mais disponível para compra.
Esta documentação destina-se aos clientes existentes com direitos anteriores ao Data Science Workspace.

Este tutorial usa o Sensei Machine Learning API para criar um Engine, também conhecido como Receita na interface do usuário.

Antes de começar, é importante observar que o Adobe Experience Platform Data Science Workspace usa termos diferentes para se referir a elementos semelhantes na API e na interface. Os termos da API são usados neste tutorial e a tabela a seguir descreve os termos correlacionados:

Termo da interface
Termo da API
Fórmula
Mecanismo
Modelo
MLInstance
Treinamento e avaliação
Experimento
Serviço
ServiçoMLS

Um mecanismo contém algoritmos e lógica de aprendizado de máquina para resolver problemas específicos. O diagrama abaixo fornece uma visualização mostrando o fluxo de trabalho da API em Data Science Workspace. Este tutorial foca em criar um mecanismo, o cérebro de um modelo de aprendizado de máquina.

Introdução

Este tutorial requer um arquivo de fórmula empacotado na forma de um URL Docker. Siga os arquivos de origem do Pacote em um Tutorial de Receita para criar um arquivo receita compactado ou fornecer o seu próprio.

  • {DOCKER_URL}: Um endereço URL para uma imagem docker de um serviço inteligente.

Esta tutorial exige que você tenha completado a Authentication a Adobe Experience Platform tutorial solicitar efetuar chamadas para Platform APIs com êxito. Concluir o tutorial de autenticação fornece os valores para cada um dos cabeçalhos necessários em todas as chamadas de API da Experience Platform, conforme mostrado abaixo:

  • {ACCESS_TOKEN}: Seu valor de token de portador específico fornecido após a autenticação.
  • {ORG_ID}: as credenciais da sua organização foram encontradas em sua integração exclusiva com o Adobe Experience Platform.
  • {API_KEY}: O valor da sua chave de API específica foi encontrado na sua integração exclusiva do Adobe Experience Platform.

Criar um mecanismo

Os mecanismos podem ser criados fazendo uma solicitação POST para o endpoint /engines. O mecanismo criado é configurado com base no formulário do arquivo de receita empacotado que deve ser incluído como parte da solicitação de API.

Criar um mecanismo com um URL Docker create-an-engine-with-a-docker-url

Para criar um mecanismo com um arquivo de fórmula empacotado armazenado em um contêiner do Docker, você deve fornecer o URL do Docker para o arquivo de fórmula empacotado.

CAUTION
Se você estiver usando Python ou R, use a solicitação abaixo. Se você estiver usando PySpark ou Scala, use o exemplo de solicitação PySpark/Scala localizado abaixo do exemplo Python/R.

Formato da API

POST /engines

Solicitar Python/R

curl -X POST \
    https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: {ACCESS_TOKEN}' \
    -H 'X-API-KEY: {API_KEY}' \
    -H 'content-type: multipart/form-data' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H `x-sandbox-name: {SANDBOX_NAME}` \
    -F 'engine={
        "name": "Retail Sales Engine Python",
        "description": "A description for Retail Sales Engine, this Engines execution type is Python",
        "type": "Python"
        "artifacts": {
            "default": {
                "image": {
                    "location": "{DOCKER_URL}",
                    "name": "retail_sales_python",
                    "executionType": "Python"
                }
            }
        }
    }'
Propriedade
Descrição
engine.name
O nome desejado para o mecanismo. A fórmula correspondente a este mecanismo herdará esse valor para ser exibido na interface do usuário Data Science Workspace como o nome da fórmula.
engine.description
Uma descrição opcional do mecanismo. A fórmula correspondente a este mecanismo herdará esse valor para ser exibido na interface do usuário Data Science Workspace como a descrição da fórmula. Não remova essa propriedade, deixe esse valor ser uma string vazia se você optar por não fornecer uma descrição.
engine.type
O tipo de execução do mecanismo. Este valor corresponde ao idioma no qual a imagem do Docker é desenvolvida. Quando um URL do Docker é fornecido para criar um Mecanismo, type ele é Python, R, PySpark( Spark Scala) ou Tensorflow.
artifacts.default.image.location
Você {DOCKER_URL} vai aqui. Um Docker completo URL tem a seguinte estrutura: your_docker_host.azurecr.io/docker_image_file:version
artifacts.default.image.name
Um nome adicional para o arquivo de imagem Docker. Não remova essa propriedade, deixe esse valor ser uma sequência de caracteres vazia se você optar por não fornecer um nome de arquivo de imagem adicional do Docker.
artifacts.default.image.executionType
O tipo de execução deste Mecanismo. Esse valor corresponde ao idioma em que a imagem do Docker é desenvolvida no. Quando uma URL do Docker é fornecida para criar um Mecanismo, executionType é Python, R, PySpark, Spark (Scala) ou Tensorflow.

Solicitar PySpark

curl -X POST \
  https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: multipart/form-data' \
    -F 'engine={
    "name": "PySpark retail sales recipe",
    "description": "A description for this Engine",
    "type": "PySpark",
    "mlLibrary":"databricks-spark",
    "artifacts": {
        "default": {
            "image": {
                "name": "modelspark",
                "executionType": "PySpark",
                "packagingType": "docker",
                "location": "v1d2cs4mimnlttw.azurecr.io/sarunbatchtest:0.0.1"
            }
        }
    }
}'
Propriedade
Descrição
name
O nome desejado para o Mecanismo. A Receita correspondente a este Mecanismo herdará esse valor a ser exibido no interface como o nome da Receita.
description
Uma descrição opcional do mecanismo. A fórmula correspondente a este mecanismo herdará esse valor para ser exibido na interface do usuário como a descrição da fórmula. Esta propriedade é obrigatória. Se não quiser fornecer uma descrição, defina o valor como uma cadeia de caracteres vazia.
type
O tipo de execução do Mecanismo. Esse valor corresponde ao idioma no qual a imagem do Docker é criada em "PySpark".
mlLibrary
Um campo necessário ao criar mecanismos para receitas do PySpark e Scala.
artifacts.default.image.location
A localização da imagem do Docker vinculada por um URL do Docker.
artifacts.default.image.executionType
O tipo de execução do mecanismo. Este valor corresponde à linguagem em que a imagem do Docker é construída sobre "Spark".

Solicitar escala

curl -X POST \
  https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: multipart/form-data' \
    -F 'engine={
    "name": "Spark retail sales recipe",
    "description": "A description for this Engine",
    "type": "Spark",
    "mlLibrary":"databricks-spark",
    "artifacts": {
        "default": {
            "image": {
                "name": "modelspark",
                "executionType": "Spark",
                "packagingType": "docker",
                "location": "v1d2cs4mimnlttw.azurecr.io/sarunbatchtest:0.0.1"
            }
        }
    }
}'
Propriedade
Descrição
name
O nome desejado para o mecanismo. A fórmula correspondente a este mecanismo herdará esse valor para ser exibido na interface do usuário como o nome da fórmula.
description
Uma descrição opcional do mecanismo. A fórmula correspondente a este mecanismo herdará esse valor para ser exibido na interface do usuário como a descrição da fórmula. Esta propriedade é obrigatória. Se não quiser fornecer uma descrição, defina o valor como uma cadeia de caracteres vazia.
type
O tipo de execução do Mecanismo. Esse valor corresponde ao idioma no qual a imagem do Docker é criada no "Spark".
mlLibrary
Um campo necessário ao criar mecanismos para receitas do PySpark e Scala.
artifacts.default.image.location
A localização da imagem do Docker vinculada por um URL do Docker.
artifacts.default.image.executionType
O tipo de execução do Mecanismo. Esse valor corresponde ao idioma no qual a imagem do Docker é criada no "Spark".

Resposta

Uma resposta bem-sucedida retorna uma carga contendo os detalhes do Mecanismo recém-criado, incluindo seu identificador exclusivo (id). O exemplo de resposta a seguir é para um Python mecanismo. As executionType teclas e type mudam com base no POST fornecido.

{
    "id": "{ENGINE_ID}",
    "name": "A name for this Engine",
    "description": "A description for this Engine",
    "type": "Python",
    "algorithm": "Classification",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "artifacts": {
        "default": {
            "image": {
                "location": "{DOCKER_URL}",
                "name": "An additional name for the Docker image",
                "executionType": "Python",
                "packagingType": "docker"
            }
        }
    }
}

Uma resposta bem-sucedida mostra uma carga JSON com informações sobre o mecanismo recém-criado. A chave id representa o identificador de Mecanismo exclusivo e é necessária no próximo tutorial para criar uma MLInstance. Verifique se o identificador de Mecanismo está salvo antes de prosseguir para as próximas etapas.

Próximas etapas next-steps

Você criou um mecanismo usando a API e um identificador de mecanismo exclusivo foi obtido como parte do corpo da resposta. Você pode usar esse identificador de Mecanismo no próximo tutorial enquanto aprende a criar, treinar e avaliar um Modelo usando a API.

recommendation-more-help
cc79fe26-64da-411e-a6b9-5b650f53e4e9