Terminal de experimentos
O desenvolvimento e o treinamento do modelo ocorrem no nível Experimento, onde um Experimento consiste em uma MLInstance, treinamento corridas e pontuação de corridas.
Criar um Experimento create-an-experiment
É possível criar um Experimento executando uma solicitação POST ao fornecer um nome e uma ID de MLInstance válida na carga solicitação.
Formato da API
POST /experiments
Solicitação
curl -X POST \
https://platform.adobe.io/data/sensei/experiments \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=experiment.v1.json' \
-d '{
"name": "a name for this Experiment",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda"
}'
name
mlInstanceId
Resposta
Uma resposta bem-sucedida retorna uma carga contendo os detalhes do Experimento recém-criado, incluindo seu identificador exclusivo (id
).
{
"id": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"name": "A name for this Experiment",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"createdByService": false
}
Criar e executar um treinamento ou uma execução de pontuação experiment-training-scoring
Você pode criar execuções de treinamento ou de pontuação executando uma solicitação POST, fornecendo uma ID de experimento válida e especificando a tarefa de execução. As execuções de pontuação só poderão ser criadas se o Experimento tiver uma execução de treinamento existente e bem-sucedida. A criação bem-sucedida de uma execução de treinamento inicializará o procedimento de treinamento do modelo e sua conclusão bem-sucedida gerará um modelo treinado. A geração de modelos treinados substituirá quaisquer modelos existentes anteriormente, de modo que um Experimento possa utilizar apenas um único modelo treinado a qualquer momento.
Formato de API
POST /experiments/{EXPERIMENT_ID}/runs
{EXPERIMENT_ID}
Solicitação
curl -X POST \
https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b/runs \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=experimentRun.v1.json' \
-d '{
"mode": "{TASK}"
}'
{TASK}
train
para treinamento, score
para pontuação ou featurePipeline
para pipeline de recursos.Resposta
Uma resposta bem-sucedida retorna uma carga contendo os detalhes da execução recém-criada, incluindo o padrão herdado treinamento ou parâmetros de pontuação, e a ID exclusiva ({RUN_ID}
da execução).
{
"id": "33408593-2871-4198-a812-6d1b7d939cda",
"mode": "{TASK}",
"experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"createdBySchedule": false,
"tasks": [
{
"name": "{TASK}",
"parameters": [
{
"key": "parameter",
"value": "parameter value"
}
]
}
]
}
Recuperar uma lista de experimentos
Você pode recuperar uma lista de Experimentos pertencentes a uma MLInstance específica executando uma única solicitação de GET e fornecendo uma ID de MLInstance válida como parâmetro de consulta. Para obter uma lista de consultas disponíveis, consulte a seção do apêndice sobre parâmetros de consulta para recuperação de ativos.
Formato da API
GET /experiments
GET /experiments?property=mlInstanceId=={MLINSTANCE_ID}
{MLINSTANCE_ID}
Solicitação
curl -X GET \
https://platform.adobe.io/data/sensei/experiments?property=mlInstanceId==46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
Uma resposta bem-sucedida retorna uma lista de Experimentos que compartilham a mesma ID de MLInstance ({MLINSTANCE_ID}
).
{
"children": [
{
"id": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"name": "A name for this Experiment",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"created": "2019-01-01T00:00:00.000Z",
"updated": "2019-01-01T00:00:00.000Z",
"createdByService": false
},
{
"id": "6cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"name": "Training Run 1",
"mlInstanceId": "46986c8f-7839-4376-8509-0178bdf32cda",
"created": "2019-01-01T00:00:00.000Z",
"updated": "2019-01-01T00:00:00.000Z",
"createdByService": false
},
{
"id": "7cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"name": "Training Run 2",
"mlInstanceId": "46986c8f-7939-4376-8509-0178bdf32cda",
"created": "2019-01-01T00:00:00.000Z",
"updated": "2019-01-01T00:00:00.000Z",
"createdByService": false
}
],
"_page": {
"property": "deleted==false",
"count": 3
}
}
Recuperar um experimento específico retrieve-specific
Você pode recuperar os detalhes de uma Experimento específica executando uma solicitação GET que inclui a ID da Experimento desejada no caminho solicitação.
Formato da API
GET /experiments/{EXPERIMENT_ID}
{EXPERIMENT_ID}
Solicitação
curl -X GET \
https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
Uma resposta bem-sucedida retorna uma carga contendo os detalhes do experimento solicitado.
{
"id": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"name": "A name for this Experiment",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"createdByService": false
}
Recuperar uma lista de execuções de experimento
Você pode recuperar uma lista de treinamentos ou execuções de pontuação pertencentes a um Experimento específico executando uma única solicitação de GET e fornecendo uma ID de experimento válida. Para ajudar a filtrar os resultados, você pode especificar parâmetros de consulta no caminho da solicitação. Para obter uma lista completa dos parâmetros de consulta disponíveis, consulte a seção do apêndice sobre parâmetros de consulta para recuperação de ativos.
Formato da API
GET /experiments/{EXPERIMENT_ID}/runs
GET /experiments/{EXPERIMENT_ID}/runs?{QUERY_PARAMETER}={VALUE}
GET /experiments/{EXPERIMENT_ID}/runs?{QUERY_PARAMETER_1}={VALUE_1}&{QUERY_PARAMETER_2}={VALUE_2}
{EXPERIMENT_ID}
{QUERY_PARAMETER}
{VALUE}
Solicitação
A solicitação a seguir contém um query e recupera uma lista de treinamento correções pertencentes a algumas Experimento.
curl -X GET \
https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b/runs?property=mode==train \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
Uma resposta bem-sucedida retorna uma carga contendo uma lista de execuções e cada um de seus detalhes, incluindo a ID de execução de experimento ({RUN_ID}
).
{
"children": [
{
"id": "33408593-2871-4198-a812-6d1b7d939cda",
"mode": "train",
"experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"createdBySchedule": false
}
],
"_page": {
"property": "mode==train,experimentId==5cb25a2d-2cbd-4c99-a619-8ddae5250a7b,deleted==false",
"totalCount": 1,
"count": 1
}
}
Atualizar um Experimento
Você pode atualizar uma Experimento existente sobrescrevendo suas propriedades por meio de uma solicitação PUT que inclui a ID do Direcionamento Experimento no caminho solicitação e fornecendo uma carga JSON contendo propriedades atualizadas.
A chamada de API de amostra a seguir atualiza o nome de um Experimentos, enquanto estas propriedades são inicialmente:
{
"name": "A name for this Experiment",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"createdByService": false
}
Formato de API
PUT /experiments/{EXPERIMENT_ID}
{EXPERIMENT_ID}
Solicitação
curl -X PUT \
https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=experiments.v1.json' \
-d '{
"name": "An upated name",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"createdByService": false
}'
Resposta
Uma resposta bem-sucedida retorna uma carga contendo os detalhes atualizados do experimento.
{
"id": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"name": "An updated name",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-02T00:00:00.000Z",
"createdByService": false
}
Excluir um experimento
Você pode excluir um único experimento executando uma solicitação DELETE que inclui a ID do experimento de destino no caminho da solicitação.
Formato da API
DELETE /experiments/{EXPERIMENT_ID}
{EXPERIMENT_ID}
Solicitação
curl -X DELETE \
https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
{
"title": "Success",
"status": 200,
"detail": "Experiment successfully deleted"
}
Excluir experimentos por ID de MLInstance
Você pode excluir todos os experimentos pertencentes a uma MLInstance específica executando uma solicitação DELETE que inclui a ID da MLInstance como parâmetro de consulta.
Formato da API
DELETE /experiments?mlInstanceId={MLINSTANCE_ID}
{MLINSTANCE_ID}
Solicitação
curl -X DELETE \
https://platform.adobe.io/data/sensei/experiments?mlInstanceId=46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
{
"title": "Success",
"status": 200,
"detail": "Experiments successfully deleted"
}