Endpoint de mecanismos
Os mecanismos são as bases para modelos de aprendizado de máquina no Espaço de trabalho de ciência de dados. Eles contêm algoritmos de aprendizado de máquina que resolvem problemas específicos, pipelines de recursos para executar engenharia de recursos ou ambos.
Pesquisar o Registro do Docker
Suas credenciais de registro do Docker são necessárias para fazer upload de um arquivo de fórmula empacotado, incluindo o URL do host do Docker, o nome de usuário e a senha. Você pode pesquisar essas informações executando a seguinte solicitação GET:
Formato da API
GET /engines/dockerRegistry
Solicitação
curl -X GET https://platform.adobe.io/data/sensei/engines/dockerRegistry \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
Uma resposta bem-sucedida retorna uma carga útil contendo os detalhes do Registro do Docker, incluindo o URL do Docker (host
), nome de usuário (username
) e a senha (password
).
{ACCESS_TOKEN}
foi atualizado.{
"host": "docker_host.azurecr.io",
"username": "00000000-0000-0000-0000-000000000000",
"password": "password"
}
Criar um mecanismo usando URLs do Docker docker-image
Você pode criar um Mecanismo executando uma solicitação POST enquanto fornece seus metadados e um URL do Docker que faz referência a uma imagem do Docker em formulários de várias partes.
Formato da API
POST /engines
Solicitar Python/R
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: multipart/form-data' \
-F 'engine={
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"location": "v1rsvj32smc4wbs.azurecr.io/ml-featurepipeline-pyspark:1.0",
"name": "An additional name for the Docker image",
"executionType": "Python"
}
}
}
}'
name
description
type
algorithm
artifacts.default.image.location
artifacts.default.image.executionType
Solicitar PySpark/Scala
Ao fazer um pedido de receitas do PySpark, a executionType
e type
é "PySpark". Ao fazer um pedido de receitas Scala, a executionType
e type
é "Spark". O exemplo de fórmula Scala a seguir usa o Spark:
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: multipart/form-data' \
-F 'engine={
"name": "Spark retail sales recipe",
"description": "A description for this Engine",
"type": "Spark",
"mlLibrary":"databricks-spark",
"artifacts": {
"default": {
"image": {
"name": "modelspark",
"executionType": "Spark",
"packagingType": "docker",
"location": "v1d2cs4mimnlttw.azurecr.io/sarunbatchtest:0.0.1"
}
}
}
}'
name
description
type
mlLibrary
databricks-spark
.artifacts.default.image.location
artifacts.default.image.executionType
Resposta
Uma resposta bem-sucedida retorna uma carga contendo os detalhes do Mecanismo recém-criado, incluindo seu identificador exclusivo (id
). O exemplo de resposta a seguir é para um mecanismo Python. Todas as respostas do mecanismo seguem este formato:
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"location": "v1rsvj32smc4wbs.azurecr.io/ml-featurepipeline-pyspark:1.0",
"name": "An additional name for the Docker image",
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Criar um mecanismo de pipeline de recursos usando URLs do Docker feature-pipeline-docker
Você pode criar um mecanismo de pipeline de recursos executando uma solicitação POST enquanto fornece seus metadados e um URL do Docker que faz referência a uma imagem do Docker.
Formato da API
POST /engines
Solicitação
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer ' \
-H 'x-gw-ims-org-id: 20655D0F5B9875B20A495E23@AdobeOrg' \
-H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=engine.v1.json' \
-H 'x-api-key: acp_foundation_machineLearning' \
-H 'Content-Type: text/plain' \
-F '{
"type": "PySpark",
"algorithm":"fp",
"name": "Feature_Pipeline_Engine",
"description": "Feature_Pipeline_Engine",
"mlLibrary": "databricks-spark",
"artifacts": {
"default": {
"image": {
"location": "v7d1cs2mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "datatransformation",
"executionType": "PySpark",
"packagingType": "docker"
},
"defaultMLInstanceConfigs": [ ...
]
}
}
}'
type
algorithm
fp
(pipeline de recursos).name
description
mlLibrary
databricks-spark
.artifacts.default.image.location
artifacts.default.image.executionType
artifacts.default.image.packagingType
docker
.artifacts.default.defaultMLInstanceConfigs
pipeline.json
parâmetros do arquivo de configuração.Resposta
Uma resposta bem-sucedida retorna uma carga contendo os detalhes do mecanismo de pipeline de recurso recém-criado, incluindo seu identificador exclusivo (id
). O exemplo de resposta a seguir é para um mecanismo de pipeline de recurso do PySpark.
{
"id": "88236891-4309-4fd9-acd0-3de7827cecd1",
"name": "Feature_Pipeline_Engine",
"description": "Feature_Pipeline_Engine",
"type": "PySpark",
"algorithm": "fp",
"mlLibrary": "databricks-spark",
"created": "2020-04-24T20:46:58.382Z",
"updated": "2020-04-24T20:46:58.382Z",
"deprecated": false,
"artifacts": {
"default": {
"image": {
"location": "v7d1cs3mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "datatransformation",
"executionType": "PySpark",
"packagingType": "docker"
},
"defaultMLInstanceConfigs": [ ... ]
}
}
}
Recuperar uma lista de mecanismos
Você pode recuperar uma lista de Mecanismos executando uma única solicitação GET. Para ajudar a filtrar os resultados, você pode especificar parâmetros de consulta no caminho da solicitação. Para obter uma lista de consultas disponíveis, consulte a seção do apêndice em parâmetros de consulta para recuperação de ativos.
Formato da API
GET /engines
GET /engines?parameter_1=value_1
GET /engines?parameter_1=value_1¶meter_2=value_2
Solicitação
curl -X GET \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
Uma resposta bem-sucedida retorna uma lista de Mecanismos e seus detalhes.
{
"children": [
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde31",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "PySpark",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
},
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
},
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde33",
"name": "Feature Pipeline Engine",
"description": "A feature pipeline Engine",
"type": "PySpark",
"algorithm":"fp",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
],
"_page": {
"property": "deleted==false",
"totalCount": 100,
"count": 3
}
}
Recuperar um Mecanismo específico retrieve-specific
Você pode recuperar os detalhes de um Mecanismo específico executando uma solicitação GET que inclui a ID do Mecanismo desejado no caminho da solicitação.
Formato da API
GET /engines/{ENGINE_ID}
{ENGINE_ID}
Solicitação
curl -X GET \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
Uma resposta bem-sucedida retorna uma carga útil contendo os detalhes do Mecanismo desejado.
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "PySpark",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"location": "v7d1cs2mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "file.egg",
"executionType": "PySpark",
"packagingType": "docker"
}
}
}
}
Atualizar um mecanismo
Você pode modificar e atualizar um mecanismo existente substituindo suas propriedades por meio de uma solicitação PUT que inclui a ID do mecanismo de destino no caminho da solicitação e fornecendo uma carga JSON contendo propriedades atualizadas.
O exemplo de chamada de API a seguir atualizará o nome e a descrição de um Mecanismo com essas propriedades inicialmente:
{
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Formato da API
PUT /engines/{ENGINE_ID}
{ENGINE_ID}
Solicitação
curl -X PUT \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=engine.v1.json' \
-d '{
"name": "An updated name for this Engine",
"description": "An updated description",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}'
Resposta
Uma resposta bem-sucedida retorna uma carga útil contendo os detalhes atualizados do Mecanismo.
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "An updated name for this Engine",
"description": "An updated description",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-02T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Excluir um mecanismo
Você pode excluir um mecanismo executando uma solicitação DELETE enquanto especifica a ID do mecanismo de destino no caminho da solicitação. A exclusão de um mecanismo excluirá em cascata todas as MLInstances que fazem referência a esse mecanismo, incluindo quaisquer Experimentos e execuções de Experimentos pertencentes a essas MLInstances.
Formato da API
DELETE /engines/{ENGINE_ID}
{ENGINE_ID}
Solicitação
curl -X DELETE \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Resposta
{
"title": "Success",
"status": 200,
"detail": "Engine deletion was successful"
}