Insights de públicos

Os insights derivados da análise do modelo de dados tornam os dados do Adobe Real-Time CDP mais acessíveis, compreensíveis e impactantes para a tomada de decisões.

Entenda seus insights de público acessando o SQL que os capacita e gere seus próprios insights para explorar ainda mais as identidades e os perfis que compõem seus públicos. Transforme seus dados brutos em novos insights acionáveis usando o SQL modelo de dados do Real-Time CDP existente como inspiração para criar consultas para suas necessidades comerciais exclusivas.

Consulte a Exibir documentação do SQL para obter mais informações sobre como adaptar o SQL dos seus insights diretamente pela interface do PLatform.

Os seguintes insights estão todos disponíveis para você usar como parte do Painel de públicos-alvo ou de um painel definido pelo usuário personalizado. Consulte a visão geral da personalização para obter instruções sobre como personalizar seu painel ou criar e editar novos widgets na biblioteca de widgets e no painel definido pelo usuário.

Os seguintes insights estão todos disponíveis para você usar como parte do Painel de públicos-alvo ou de um painel personalizado.

Relatório de sobreposição de público-alvo audience-overlap-report

Perguntas respondidas por este insight:

  • Quais são os 50 principais públicos-alvo sobrepostos de um público-alvo filtrado específico?
  • Quais são os 50 públicos-alvo menos sobrepostos de um público-alvo filtrado específico?
  • Como o padrão de sobreposição muda para um público-alvo filtrado diferente?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT source_segment_name,
        source_segment_id,
        overlap_segment_name,
        overlap_segment_id,
        max(source_segment_audience_count) source_segment_audience_count,
        max(overlap_segment_audience_count) overlap_segment_audience_count,
        max(overlap_audience_count) overlap_audience_count,
        CASE
            WHEN (max(source_segment_audience_count) + max(overlap_segment_audience_count) - max(overlap_audience_count)) > 0 THEN (cast(max(overlap_audience_count) AS DECIMAL(18, 2)) / cast((max(source_segment_audience_count) + max(overlap_segment_audience_count) - max(overlap_audience_count)) AS DECIMAL(18, 2))) * 100::DECIMAL(9, 2)
            ELSE 100.00
        END overlapping_percentage
  FROM
    (SELECT adwh_fact_profile_overlap_of_segments.Segment1 source_segment_id,
            adwh_fact_profile_overlap_of_segments.Segment2 overlap_segment_id,
            Sum(count_of_overlap) overlap_audience_count
    FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
    WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
    GROUP BY qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.Segment2 ,
              qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.Segment1) a
  INNER JOIN
    (SELECT sum(count_of_profiles) source_segment_audience_count,
            adwh_dim_segments.segment_name source_segment_name,
            adwh_fact_profile_by_segment_trendlines.merge_policy_id,
            adwh_fact_profile_by_segment_trendlines.segment_Id segment1
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
    JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_dim_segments.segment_id = qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
    GROUP BY qsaccel.profile_agg.adwh_dim_segments.segment_name,
              qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id,
              qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id) b ON a.source_segment_id = b.segment1
  INNER JOIN
    (SELECT sum(count_of_profiles) overlap_segment_audience_count,
            adwh_dim_segments.segment_name overlap_segment_name,
            adwh_fact_profile_by_segment_trendlines.merge_policy_id,
            adwh_fact_profile_by_segment_trendlines.segment_Id segment2
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
    JOIN qsaccel.profile_agg.adwh_dim_segments ON adwh_dim_segments.segment_id = adwh_fact_profile_by_segment_trendlines.segment_Id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
    GROUP BY qsaccel.profile_agg.adwh_dim_segments.segment_name,
              qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id,
              qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id) c ON a.overlap_segment_id = c.segment2
  GROUP BY source_segment_name,
          source_segment_id,
          overlap_segment_name,
          overlap_segment_id
  ORDER BY overlapping_percentage DESC
  LIMIT 5;

Consulte a Documentação do widget Relatório de sobreposição de público para obter informações sobre a aparência e a funcionalidade deste insight.

Sobreposição de público audience-overlap

Perguntas respondidas por este insight:

  • Quais perfis são comuns a ambos os públicos-alvo?
  • Como a sobreposição afeta as taxas de engajamento ou conversão?
  • Como as estratégias de marketing podem ser personalizadas para o segmento sobreposto?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT Sum(overlap_col1) overlap_col1,
        Sum(overlap_col2) overlap_col2,
        Sum(overlap_count) Overlap_count
  FROM
    (SELECT 0 overlap_col1,
            0 overlap_col2,
            sum(count_of_overlap)Overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
    WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 1133248113
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
      AND ((qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=1870062812
            AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=2080256533)
            OR (qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=2080256533
                AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=1870062812))
    UNION ALL SELECT sum(count_of_profiles) overlap_col1,
                      0 overlap_col2,
                      0 overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
    LEFT JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1133248113
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
      AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 1870062812
    UNION ALL SELECT 0 overlap_col1,
                      sum(count_of_profiles) overlap_col2,
                      0 Overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
    JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1133248113
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
      AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 2080256533 ) a;

Consulte a Documentação do widget de sobreposição de público-alvo para obter informações sobre a aparência e a funcionalidade deste insight.

Tendência de tamanho do público-alvo audience-size-change-trend

Perguntas respondidas por este insight:

  • Há picos ou declínios significativos no tamanho do público nos últimos 30 dias, 90 dias ou 12 meses?
  • Como o tamanho do público muda durante dias específicos?
  • Foram detectadas anomalias ou padrões repetitivos de picos ou declínios nos últimos 12 meses?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT date_key,
      Profiles_added
  FROM
    (SELECT rn_num,
            date_key,
            (count_of_profiles-lag(count_of_profiles, 1, 0) over(
                                                                ORDER BY date_key))Profiles_added
    FROM
      (SELECT date_key,
              sum(x.count_of_profiles)count_of_profiles,
              row_number() OVER (
                                  ORDER BY date_key) rn_num
        FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines x
        INNER JOIN
          (SELECT MAX(process_date) last_process_date,
                  merge_policy_id
          FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
          WHERE process_name = 'FACT_TABLES_PROCESSING'
            AND process_status = 'SUCCESSFUL'
          GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
        WHERE segment_id = 1333234510
          AND x.date_key >= dateadd(DAY, -30 -1, y.last_process_date)
        GROUP BY x.date_key) a)b
  WHERE rn_num > 1;

Consulte a Documentação do widget de tendência de alteração de tamanho de público para obter informações sobre a aparência e a funcionalidade desse insight.

Tendência de tamanho do público por identidade audience-size-trend-by-identity

Perguntas respondidas por este insight:

  • Meu público-alvo está crescendo, estabilizando ou apresentando flutuações de forma consistente?
  • Existe alguma identidade específica que tenha picos ou declínios no crescimento do público ao longo do tempo?
  • Existem anomalias no crescimento da minha identidade ao longo do tempo?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT sum(count_of_profiles) AS identities,
        date_key
  FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines x
  INNER JOIN
    (SELECT MAX(process_date) last_process_date,
            merge_policy_id
    FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
    WHERE process_name = 'FACT_TABLES_PROCESSING'
      AND process_status = 'SUCCESSFUL'
    GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
  INNER JOIN qsaccel.profile_agg.adwh_dim_namespaces z ON x.namespace_id = z.namespace_id
  AND x.merge_policy_id = z.merge_policy_id
  WHERE x.date_key >= dateadd(DAY, -30, y.last_process_date)
    AND x.segment_id = 1333234510
    AND z.namespace_description = 'crmid'
  GROUP BY date_key;

Consulte a Documentação de widget Tendência de tamanho de público por identidade para obter informações sobre a aparência e a funcionalidade deste insight.

Tendência de tamanho do público audience-size-trend

Perguntas respondidas por este insight:

  • Como o tamanho do público-alvo mudou com o tempo, incluindo anomalias?
  • Como posso encontrar a tendência geral no tamanho do público-alvo ao longo dos períodos: 30 dias, 90 dias e 12 meses?
  • Quais são as principais características do público-alvo que contribuem para seu tamanho? Por exemplo, picos devido a campanhas de marketing por email.
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT date_key,
        sum(count_of_profiles) AS audience_size
  FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines x
  INNER JOIN
    (SELECT MAX(process_date) last_process_date,
            merge_policy_id
    FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
    WHERE process_name = 'FACT_TABLES_PROCESSING'
      AND process_status = 'SUCCESSFUL'
    GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
  WHERE date_key >= dateadd(DAY, -30, y.last_process_date)
    AND x.segment_id = 1333234510
  GROUP BY date_key,
          segment_id;

Consulte a Documentação do widget Tendência de tamanho de público para obter informações sobre a aparência e a funcionalidade desse insight.

Tamanho do público-alvo audience-size

Perguntas respondidas por este insight:

  • Qual é o tamanho total atual do público-alvo?
  • Como o tamanho atual do público se compara aos períodos anteriores ou a públicos específicos?
  • Qual é o impacto das campanhas de marketing recentes no tamanho do público?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT
  sum(
    qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.count_of_profiles
  ) count_of_profiles
FROM
  qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id = qsaccel.profile_agg.adwh_dim_segments.segment_id
WHERE
  qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id = -1323307941
  AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1914917902
  AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-12';

Consulte a documentação do widget de tamanho de público para obter informações sobre a aparência e a funcionalidade deste insight.

Distribuição de pontuações da IA do cliente customer-ai-distribution-of-scores

Perguntas respondidas por este insight:

  • Qual é a distribuição de pontuação para cada segmento do meu modelo de IA do cliente, filtrado por um público-alvo selecionado?
  • Qual é a distribuição de pontuação de alta, média e baixa para um público-alvo específico?
  • Qual é o detalhamento da distribuição de pontuação por vários públicos-alvo de interesse?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT b.model_name,
      b.model_type,
      c.segment_name,
      c.segment_id,
      CASE
        WHEN score >= 0
          AND score < 25 THEN 'LOW'
        WHEN score >= 25
          AND score < 75 THEN 'MEDIUM'
        WHEN score >= 75
          AND score <= 100 THEN 'HIGH'
        END bucket_name,
      CASE
        WHEN score >= 0
          AND score < 5 THEN '02.50'
        WHEN score >= 5
          AND score < 10 THEN '07.50'
        WHEN score >= 10
          AND score < 15 THEN '12.50'
        WHEN score >= 15
          AND score < 20 THEN '17.50'
        WHEN score >= 20
          AND score < 25 THEN '22.50'
        WHEN score >= 25
          AND score < 30 THEN '27.50'
        WHEN score >= 30
          AND score < 35 THEN '32.50'
        WHEN score >= 35
          AND score < 40 THEN '37.50'
        WHEN score >= 40
          AND score < 45 THEN '42.50'
        WHEN score >= 45
          AND score < 50 THEN '47.50'
        WHEN score >= 50
          AND score < 55 THEN '52.50'
        WHEN score >= 55
          AND score < 60 THEN '57.50'
        WHEN score >= 60
          AND score < 65 THEN '62.50'
        WHEN score >= 65
          AND score < 70 THEN '67.50'
        WHEN score >= 70
          AND score < 75 THEN '72.50'
        WHEN score >= 75
          AND score < 80 THEN '77.50'
        WHEN score >= 80
          AND score < 85 THEN '82.50'
        WHEN score >= 85
          AND score < 90 THEN '87.50'
        WHEN score >= 90
          AND score < 95 THEN '92.50'
        WHEN score >= 95
          AND score <= 100 THEN '97.50'
        END score_bins,
      Sum(CASE
            WHEN score >= 0
              AND score < 25 THEN count_of_profiles
            WHEN score >= 25
              AND score < 75 THEN count_of_profiles
            WHEN score >= 75
              AND score <= 100 THEN count_of_profiles
        END) count_of_profiles
   FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_ai_models a
          JOIN qsaccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id = b.merge_policy_id
     AND a.model_id = b.model_id
          JOIN qsaccel.profile_agg.adwh_dim_segments c ON a.segment_id = c.segment_id
   WHERE a.merge_policy_id = 1133248113
     AND a.model_id = 1829081696
     AND a.segment_id = 1870062812
     AND score_date =
         (SELECT MAX(score_date)
          FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_ai_models d
          WHERE d.model_id = a.model_id) GROUP  BY b.model_name,
             b.model_type,
             c.segment_name,
             c.segment_id,
             CASE
               WHEN score >= 0
                 AND score < 25 THEN 'LOW'
               WHEN score >= 25
                 AND score < 75 THEN 'MEDIUM'
               WHEN score >= 75
                 AND score <= 100 THEN 'HIGH'
               END,
             CASE
               WHEN score >= 0
                 AND score < 5 THEN '02.50'
               WHEN score >= 5
                 AND score < 10 THEN '07.50'
               WHEN score >= 10
                 AND score < 15 THEN '12.50'
               WHEN score >= 15
                 AND score < 20 THEN '17.50'
               WHEN score >= 20
                 AND score < 25 THEN '22.50'
               WHEN score >= 25
                 AND score < 30 THEN '27.50'
               WHEN score >= 30
                 AND score < 35 THEN '32.50'
               WHEN score >= 35
                 AND score < 40 THEN '37.50'
               WHEN score >= 40
                 AND score < 45 THEN '42.50'
               WHEN score >= 45
                 AND score < 50 THEN '47.50'
               WHEN score >= 50
                 AND score < 55 THEN '52.50'
               WHEN score >= 55
                 AND score < 60 THEN '57.50'
               WHEN score >= 60
                 AND score < 65 THEN '62.50'
               WHEN score >= 65
                 AND score < 70 THEN '67.50'
               WHEN score >= 70
                 AND score < 75 THEN '72.50'
               WHEN score >= 75
                 AND score < 80 THEN '77.50'
               WHEN score >= 80
                 AND score < 85 THEN '82.50'
               WHEN score >= 85
                 AND score < 90 THEN '87.50'
               WHEN score >= 90
                 AND score < 95 THEN '92.50'
               WHEN score >= 95
                 AND score <= 100 THEN '97.50'
               END;

Consulte a documentação do widget de distribuição de pontuações da IA do cliente para obter informações sobre a aparência e a funcionalidade deste insight.

Resumo de pontuação da IA do cliente customer-ai-scoring-summary

Perguntas respondidas por este insight:

  • Qual é o resumo de pontuação para cada um dos meus modelos de IA do cliente para um público-alvo específico?
  • Como minhas pontuações de propensão da IA do cliente mudam para públicos diferentes?
  • Como meu resumo de pontuação se compara aos outros KPIs na visão geral do público-alvo?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT model_name,
         model_type,
         segment_name,
         CASE
             WHEN score BETWEEN 0 AND 24 THEN 'LOW'
             WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
             WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
         END score_buckets,
         sum(count_of_profiles) count_of_profiles
  FROM QSAccel.profile_agg.adwh_fact_profile_by_segment_ai_models a
  JOIN QSAccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id=b.merge_policy_id
  AND a.model_id=b.model_id
  JOIN QSAccel.profile_agg.adwh_dim_segments c ON a.segment_id=c.segment_id
  WHERE a.merge_policy_id=1133248113
    AND a.model_id =1829081696
    AND a.segment_id=1870062812
    AND score_date=
      (SELECT max(score_date)
       FROM QSAccel.profile_agg.adwh_fact_profile_by_segment_ai_models d
       WHERE d.model_id=a.model_id)
  GROUP BY model_name,
           model_type,
           segment_name,
           CASE
               WHEN score BETWEEN 0 AND 24 THEN 'LOW'
               WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
               WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
           END;

Consulte a documentação do widget Resumo de pontuação da IA do cliente para obter informações sobre a aparência e a funcionalidade deste insight.

Sobreposição de identidade identity-overlap

Perguntas respondidas por este insight:

  • Qual é a interseção comum entre Tipo de identidade A e Tipo de identidade B para um público filtrado?
  • Como refino os públicos-alvo do cliente com base na sobreposição de tipos de identidade específicos para aprimorar as estratégias de marketing direcionadas?
  • Quais insights podem ser obtidos a partir da avaliação do desempenho da campanha nas áreas de interseção?
  • Com base nesses insights, como os futuros esforços de marketing podem ser otimizados?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT Sum(overlap_col1) overlap_col1,
        Sum(overlap_col2) overlap_col2,
        Sum(overlap_count) Overlap_count
  FROM
    (SELECT 0 overlap_col1,
            0 overlap_col2,
            Sum(count_of_profiles) Overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment
    WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.segment_id = 1333234510
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.merge_policy_id = 1709997014
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.date_key = '2024-01-10'
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.overlap_id IN
        (SELECT a.overlap_id
          FROM
            (SELECT qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id overlap_id,
                    count(*) cnt_num
            FROM qsaccel.profile_agg.adwh_dim_overlap_namespaces
            WHERE qsaccel.profile_agg.adwh_dim_overlap_namespaces.merge_policy_id = 1709997014
              AND qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_namespaces in ('crmid',
                                                                                          'email')
            GROUP BY qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id)a
          WHERE a.cnt_num>1 )
    UNION ALL SELECT count_of_profiles overlap_col1,
                      0 overlap_col2,
                      0 Overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
    LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
    AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
    WHERE qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'crmid'
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10'
    UNION ALL SELECT 0 overlap_col1,
                      count_of_profiles overlap_col2,
                      0 Overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
    LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
    AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
    WHERE qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'email'
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10' ) a;

Consulte a documentação do widget Sobreposição de identidade para obter informações sobre a aparência e a funcionalidade deste insight.

Perfis por identidade profiles-by-identity

Perguntas respondidas por este insight:

  • Qual tipo de identidade tem a maior proporção na contagem total de perfis para um público-alvo selecionado?
  • Há disparidades significativas entre os tipos de identidade para um público-alvo selecionado?
  • Qual é a distribuição geral dos tipos de identidade por público-alvo?
  • Existem disparidades ou anomalias significativas na contagem de identidades para vários públicos-alvo?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
        sum(qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.count_of_profiles) count_of_profiles
  FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
  AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
  WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
    AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
    AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10'
  GROUP BY qsaccel.profile_agg.adwh_dim_namespaces.namespace_description
  ORDER BY count_of_profiles DESC;

Consulte a documentação do widget Perfis por identidade para obter informações sobre a aparência e a funcionalidade desse insight.

Ativações programadas scheduled-activations

Perguntas respondidas por este insight:

  • Quais são as datas de início e término das ativações de melhor desempenho para um público-alvo específico em uma plataforma específica?
  • Quais plataformas foram mais usadas para ativações programadas de um público-alvo específico?
  • Existem padrões no uso da plataforma que possam orientar as decisões sobre como priorizar ou diversificar estratégias de ativação para um público específico?
Selecione para revelar o SQL que gera esse insight
code language-sql
SELECT p.destination_platform ,
       p.destination_platform_name AS platform ,
       d.destination_name ,
       d.destination ,
       br.start_date ,
       CASE
           WHEN br.end_date = '9999-12-31' THEN 'Ongoing'
           ELSE br.end_date
       END AS end_date
  FROM qsaccel.profile_agg.adwh_dim_br_segment_destinations br
  JOIN qsaccel.profile_agg.adwh_dim_destination d ON br.destination_id = d.destination_id
  JOIN qsaccel.profile_agg.adwh_dim_destination_platform p ON d.destination_platform_id = p.destination_platform_id
  JOIN
    (SELECT MAX(process_date) AS last_process_date
     FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
     WHERE process_name = 'FACT_TABLES_PROCESSING'
       AND process_status = 'SUCCESSFUL' ) lpd ON lpd.last_process_date BETWEEN br.start_date AND br.end_date
  AND br.segment_id = 1333234510;

Consulte a Documentação do widget de ativações agendadas para obter informações sobre a aparência e a funcionalidade deste insight.

Próximas etapas

Ao ler este documento, você agora entende o SQL que gera insights de painel e quais perguntas comuns essa análise resolve. Agora você pode editar e iterar no SQL para gerar seus próprios insights.

Consulte a Exibir documentação do SQL para obter mais informações sobre como adaptar o SQL dos seus insights diretamente pela interface do PLatform.

Você também pode ler e entender o SQL que gera insights para os painéis Perfis, Perfis de Conta e Destinos.

recommendation-more-help
ececc77d-ff44-4382-85ee-a087c8834323