Perspectivas de perfil

Las perspectivas derivadas del análisis del modelo de datos hacen que los datos de Adobe Real-Time CDP sean más accesibles, comprensibles e impactantes para la toma de decisiones.

Comprenda sus perspectivas de perfil accediendo al SQL que las alimenta y, a continuación, genere sus propias perspectivas para explorar aún más a sus clientes y a sus experiencias de consumidor que conforman sus perfiles. Transforme los datos sin procesar en nuevas perspectivas procesables mediante el uso del modelo de datos SQL de Real-Time CDP existente como inspiración para crear consultas para sus necesidades comerciales únicas.

Consulte la Ver documentación de SQL para obtener más información sobre cómo adaptar el SQL de sus perspectivas directamente a través de la interfaz de usuario de Experience Platform.

Las siguientes perspectivas están disponibles para que las use como parte del panel de perfiles o un panel personalizado definido por el usuario. Consulte la descripción general de la personalización para obtener instrucciones sobre cómo personalizar el tablero o crear y editar nuevos widgets en la biblioteca de widgets y tablero definido por el usuario.

Superposición de público por política de combinación audience-overlap-by-merge-policy

Preguntas respondidas por este insight:

  • ¿Qué perfiles son comunes a ambas audiencias?
  • ¿Cómo afecta la superposición a las tasas de participación o conversión?
  • ¿Cómo se pueden adaptar las estrategias de marketing al segmento superpuesto?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT Sum(overlap_col1) overlap_col1,
        Sum(overlap_col2) overlap_col2,
        Sum(overlap_count) Overlap_count
  FROM
    (SELECT 0 overlap_col1,
            0 overlap_col2,
            sum(count_of_overlap)Overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
    WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
      AND ((qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=1333234510
            AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=1559754729)
            OR (qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=1559754729
                AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=1333234510))
    UNION ALL SELECT sum(count_of_profiles) overlap_col1,
                      0 overlap_col2,
                      0 overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
    LEFT JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
      AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 1333234510
    UNION ALL SELECT 0 overlap_col1,
                      sum(count_of_profiles) overlap_col2,
                      0 Overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
    JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
      AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 1559754729 ) a;

Consulte la documentación del widget de políticas de combinación que superpone audiencias para obtener información sobre el aspecto y la funcionalidad de este insight.

Informe de superposición de público audience-overlap-report

Preguntas respondidas por este insight:

  • ¿Cuáles son las 50 audiencias más superpuestas?
  • ¿Cuáles son las 50 audiencias menos superpuestas?
  • ¿Cómo cambia el patrón superpuesto según la política de combinación?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT source_segment_name,
        source_segment_id,
        overlap_segment_name,
        overlap_segment_id,
        max(source_segment_audience_count) source_segment_audience_count,
        max(overlap_segment_audience_count) overlap_segment_audience_count,
        max(overlap_audience_count) overlap_audience_count,
        CASE
            WHEN (max(source_segment_audience_count) + max(overlap_segment_audience_count) - max(overlap_audience_count)) > 0 THEN (cast(max(overlap_audience_count) AS DECIMAL(18, 2)) / cast((max(source_segment_audience_count) + max(overlap_segment_audience_count) - max(overlap_audience_count)) AS DECIMAL(18, 2))) * 100::DECIMAL(9, 2)
            ELSE 100.00
        END overlapping_percentage
  FROM
    (SELECT adwh_fact_profile_overlap_of_segments.Segment1 source_segment_id,
            adwh_fact_profile_overlap_of_segments.Segment2 overlap_segment_id,
            Sum(count_of_overlap) overlap_audience_count
    FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
    WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
    GROUP BY qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.Segment2 ,
              qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.Segment1) a
  INNER JOIN
    (SELECT sum(count_of_profiles) source_segment_audience_count,
            adwh_dim_segments.segment_name source_segment_name,
            adwh_fact_profile_by_segment_trendlines.merge_policy_id,
            adwh_fact_profile_by_segment_trendlines.segment_Id segment1
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
    JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_dim_segments.segment_id = qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
    GROUP BY qsaccel.profile_agg.adwh_dim_segments.segment_name,
              qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id,
              qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id) b ON a.source_segment_id = b.segment1
  INNER JOIN
    (SELECT sum(count_of_profiles) overlap_segment_audience_count,
            adwh_dim_segments.segment_name overlap_segment_name,
            adwh_fact_profile_by_segment_trendlines.merge_policy_id,
            adwh_fact_profile_by_segment_trendlines.segment_Id segment2
    FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
    JOIN qsaccel.profile_agg.adwh_dim_segments ON adwh_dim_segments.segment_id = adwh_fact_profile_by_segment_trendlines.segment_Id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
    GROUP BY qsaccel.profile_agg.adwh_dim_segments.segment_name,
              qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id,
              qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id) c ON a.overlap_segment_id = c.segment2
  GROUP BY source_segment_name,
          source_segment_id,
          overlap_segment_name,
          overlap_segment_id
  ORDER BY overlapping_percentage DESC
  LIMIT 5;

Consulte la documentación del widget de informe de superposición de audiencias para obtener información sobre el aspecto y la funcionalidad de este insight.

Audiencias (recuento) audiences

Preguntas respondidas por este insight:

  • ¿Qué política de combinación se utiliza predominantemente para la segmentación?
  • ¿Cuál es la distribución de audiencias entre políticas de combinación?
  • ¿Hay algún cambio significativo en los números de audiencia para las políticas de combinación específicas a lo largo del tiempo?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT count(DISTINCT a.segment_id) count_of_segments
  FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines a
  JOIN
    (SELECT MAX(process_date) last_process_date,
            merge_policy_id
    FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
    WHERE process_name = 'FACT_TABLES_PROCESSING'
      AND process_status = 'SUCCESSFUL'
    GROUP BY merge_policy_id) b ON a.merge_policy_id= b.merge_policy_id
  AND a.date_key = b.last_process_date
  WHERE a.merge_policy_id= 2027892989;

Consulte la documentación del widget de audiencias para obtener información sobre el aspecto y la funcionalidad de este insight.

Público asignado al estado de destino audiences-mapped-to-destination-status

Preguntas respondidas por este insight:

  • ¿Cuál es la distribución general de audiencias entre destinos asignados y no asignados?
  • ¿Qué destinos específicos tienen el número más alto de audiencias asignadas?
  • ¿Qué proporción del total de audiencias permanece sin asignar?
  • De estas audiencias sin asignar, ¿hay patrones o tendencias asociadas?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT COUNT(DISTINCT (y.segment_id)) AS count_mapped_segments,
        COUNT(DISTINCT (x.segment_id)) - COUNT(DISTINCT (y.segment_id)) AS count_unmapped_segments,
        COUNT(DISTINCT (x.segment_id)) AS total_segments
  FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines x
  LEFT JOIN qsaccel.profile_agg.adwh_dim_br_segment_destinations y ON x.segment_id = y.segment_id
  INNER JOIN
    (SELECT MAX(process_date) last_process_date,
            merge_policy_id
    FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
    WHERE process_name = 'FACT_TABLES_PROCESSING'
      AND process_status = 'SUCCESSFUL'
    GROUP BY merge_policy_id) z ON x.merge_policy_id = z.merge_policy_id
  AND x.date_key = z.last_process_date
  WHERE x.merge_policy_id = 2027892989;

Consulte la documentación de audiencias asignadas al widget de estado de destino para obtener información sobre el aspecto y la funcionalidad de este insight.

Tamaño de público audiences-size

Preguntas respondidas por este insight:

  • ¿Qué segmento de audiencia tiene el tamaño más grande?
  • ¿Cuáles son las cinco audiencias más grandes?
  • ¿Cómo cambia la distribución del tamaño de la audiencia con el paso del tiempo para la audiencia principal?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key,
        qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
        qsaccel.profile_agg.adwh_dim_segments.segment,
        qsaccel.profile_agg.adwh_dim_segments.segment_name,
        sum(qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.count_of_profiles)count_of_profiles
  FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id = qsaccel.profile_agg.adwh_dim_segments.segment_id
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_merge_policies ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id=adwh_dim_merge_policies.merge_policy_id
  WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
    AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id= 2027892989
  GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key,
          qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
          qsaccel.profile_agg.adwh_dim_segments.segment,
          qsaccel.profile_agg.adwh_dim_segments.segment_name
  ORDER BY count_of_profiles DESC
  LIMIT 20;

Consulte la documentación del widget de tamaño de audiencia para obtener información sobre el aspecto y la funcionalidad de este insight.

Distribución de puntuaciones de inteligencia artificial aplicada al cliente customer-ai-distribution-of-scores

Preguntas respondidas por este insight:

  • ¿Cuál es la distribución de puntuaciones entre bloques para cada uno de mis modelos de inteligencia artificial aplicada al cliente?
  • ¿Cuál es la distribución de las puntuaciones por puntuación alta, media y baja?
  • ¿Cuál es el desglose de la distribución de puntuación por política de combinación?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT b.model_name,
     b.model_type,
     CASE
         WHEN score >= 0
              AND score < 25 THEN 'LOW'
         WHEN score >= 25
              AND score < 75 THEN 'MEDIUM'
         WHEN score >= 75
              AND score <= 100 THEN 'HIGH'
     END bucket_name,
     CASE
         WHEN score >= 0
              AND score < 5 THEN '02.50'
         WHEN score >= 5
              AND score < 10 THEN '07.50'
         WHEN score >= 10
              AND score < 15 THEN '12.50'
         WHEN score >= 15
              AND score < 20 THEN '17.50'
         WHEN score >= 20
              AND score < 25 THEN '22.50'
         WHEN score >= 25
              AND score < 30 THEN '27.50'
         WHEN score >= 30
              AND score < 35 THEN '32.50'
         WHEN score >= 35
              AND score < 40 THEN '37.50'
         WHEN score >= 40
              AND score < 45 THEN '42.50'
         WHEN score >= 45
              AND score < 50 THEN '47.50'
         WHEN score >= 50
              AND score < 55 THEN '52.50'
         WHEN score >= 55
              AND score < 60 THEN '57.50'
         WHEN score >= 60
              AND score < 65 THEN '62.50'
         WHEN score >= 65
              AND score < 70 THEN '67.50'
         WHEN score >= 70
              AND score < 75 THEN '72.50'
         WHEN score >= 75
              AND score < 80 THEN '77.50'
         WHEN score >= 80
              AND score < 85 THEN '82.50'
         WHEN score >= 85
              AND score < 90 THEN '87.50'
         WHEN score >= 90
              AND score < 95 THEN '92.50'
         WHEN score >= 95
              AND score <= 100 THEN '97.50'
     END score_bins,
     Sum(CASE
             WHEN score >= 0
                  AND score < 25 THEN count_of_profiles
             WHEN score >= 25
                  AND score < 75 THEN count_of_profiles
             WHEN score >= 75
                  AND score <= 100 THEN count_of_profiles
         END) count_of_profiles
  FROM qsaccel.profile_agg.adwh_fact_profile_ai_models a
  JOIN qsaccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id = b.merge_policy_id
  AND a.model_id = b.model_id
  WHERE a.merge_policy_id = 2027892989
    AND a.model_id = 1829081696
    AND score_date =
      (SELECT Max(score_date)
       FROM qsaccel.profile_agg.adwh_fact_profile_ai_models d
       WHERE d.model_id = a.model_id) GROUP  BY b.model_name,
          model_type,
          CASE
              WHEN score >= 0
                   AND score < 25 THEN 'LOW'
              WHEN score >= 25
                   AND score < 75 THEN 'MEDIUM'
              WHEN score >= 75
                   AND score <= 100 THEN 'HIGH'
          END,
          CASE
              WHEN score >= 0
                   AND score < 5 THEN '02.50'
              WHEN score >= 5
                   AND score < 10 THEN '07.50'
              WHEN score >= 10
                   AND score < 15 THEN '12.50'
              WHEN score >= 15
                   AND score < 20 THEN '17.50'
              WHEN score >= 20
                   AND score < 25 THEN '22.50'
              WHEN score >= 25
                   AND score < 30 THEN '27.50'
              WHEN score >= 30
                   AND score < 35 THEN '32.50'
              WHEN score >= 35
                   AND score < 40 THEN '37.50'
              WHEN score >= 40
                   AND score < 45 THEN '42.50'
              WHEN score >= 45
                   AND score < 50 THEN '47.50'
              WHEN score >= 50
                   AND score < 55 THEN '52.50'
              WHEN score >= 55
                   AND score < 60 THEN '57.50'
              WHEN score >= 60
                   AND score < 65 THEN '62.50'
              WHEN score >= 65
                   AND score < 70 THEN '67.50'
              WHEN score >= 70
                   AND score < 75 THEN '72.50'
              WHEN score >= 75
                   AND score < 80 THEN '77.50'
              WHEN score >= 80
                   AND score < 85 THEN '82.50'
              WHEN score >= 85
                   AND score < 90 THEN '87.50'
              WHEN score >= 90
                   AND score < 95 THEN '92.50'
              WHEN score >= 95
                   AND score <= 100 THEN '97.50'
          END;

Consulte la documentación del widget de distribución de puntuaciones de inteligencia artificial aplicada al cliente para obtener información sobre la apariencia y la funcionalidad de este insight.

Resumen de puntuaciones de la inteligencia artificial aplicada al cliente customer-ai-scoring-summary

Preguntas respondidas por este insight:

  • ¿Cuál es el resumen de puntuación para cada uno de mis modelos de inteligencia artificial aplicada al cliente?
  • ¿Cómo cambian mis puntuaciones de tendencia de inteligencia artificial aplicada al cliente para diferentes audiencias?
  • ¿Cómo cambia mi resumen de puntuación en comparación con otros KPI en la descripción general de los perfiles?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT model_name,
         model_type,
         CASE
             WHEN score BETWEEN 0 AND 24 THEN 'LOW'
             WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
             WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
         END score_buckets,
         sum(count_of_profiles) count_of_profiles
  FROM QSAccel.profile_agg.adwh_fact_profile_ai_models a
  JOIN QSAccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id=b.merge_policy_id
  AND a.model_id=b.model_id
  WHERE a.merge_policy_id=2027892989
    AND a.model_id =1829081696
    AND score_date=
      (SELECT max(score_date)
       FROM QSAccel.profile_agg.adwh_fact_profile_ai_models d
       WHERE d.model_id=a.model_id)
  GROUP BY model_name,
           model_type,
           CASE
               WHEN score BETWEEN 0 AND 24 THEN 'LOW'
               WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
               WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
           END;

Consulte la documentación del widget de resumen de puntuación de inteligencia artificial aplicada al cliente para obtener información sobre el aspecto y la funcionalidad de esta insight.

Superposición de identidad identity-overlap

Preguntas respondidas por este insight:

  • ¿Cuál es la intersección común entre Tipo de identidad A y Tipo de identidad B?
  • ¿Cómo puedo refinar las audiencias de los clientes en función de la superposición de tipos de identidad específicos para mejorar las estrategias de marketing dirigidas?
  • ¿Qué perspectivas se pueden obtener de la evaluación del rendimiento de la campaña dentro de las áreas de intersección?
  • Con esta insight de rendimiento de campaña, ¿cómo se pueden optimizar los esfuerzos de marketing futuros?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT Sum(overlap_col1) overlap_col1,
        Sum(overlap_col2) overlap_col2,
        coalesce(Sum(overlap_count), 0) overlap_count
  FROM
    (SELECT 0 overlap_col1,
            0 overlap_col2,
            Sum(count_of_profiles) overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace
    WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace.date_key = '2024-01-10'
      AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace.overlap_id IN
        (SELECT a.overlap_id
          FROM
            (SELECT qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id overlap_id,
                    count(*) cnt_num
            FROM qsaccel.profile_agg.adwh_dim_overlap_namespaces
            WHERE qsaccel.profile_agg.adwh_dim_overlap_namespaces.merge_policy_id = 2027892989
              AND qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_namespaces in ('avid',
                                                                                          'crmid')
            GROUP BY qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id)a
          WHERE a.cnt_num>1 )
    UNION ALL SELECT count_of_profiles overlap_col1,
                      0 overlap_col2,
                      0 overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
    JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
    AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key = '2024-01-10'
      AND qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'avid'
    UNION ALL SELECT 0 overlap_col1,
                      count_of_profiles overlap_col2,
                      0 Overlap_count
    FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
    JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
    AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
    WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key = '2024-01-10'
      AND qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'crmid' )a;

Consulte la documentación del widget de superposición de identidades para obtener información sobre el aspecto y la funcionalidad de este insight.

Recuento de perfiles profile-count

Preguntas respondidas por este insight:

  • ¿Cuál es el recuento general de perfiles en Adobe Real-Time Customer Data Platform?
  • ¿Cómo se distribuyen los perfiles en función de las políticas de combinación?
  • ¿Qué política de combinación tiene el recuento de perfiles más alto?

El SQL que genera estas perspectivas es el siguiente:

SELECT qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
       sum(qsaccel.profile_agg.adwh_fact_profile.count_of_profiles) CNT
  FROM qsaccel.profile_agg.adwh_fact_profile
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_merge_policies ON qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_id=adwh_fact_profile.merge_policy_id
  WHERE qsaccel.profile_agg.adwh_fact_profile.date_key='2024-01-10'
    AND qsaccel.profile_agg.adwh_fact_profile.merge_policy_id = 2027892989
  GROUP BY qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name;

Encontrará información completa sobre el aspecto y la funcionalidad de este insight en la guía del widget de recuento de perfiles.

Consulte la documentación del widget de recuento de perfiles para obtener información sobre el aspecto y la funcionalidad de este insight.

Cambio de recuento de perfiles profile-count-change

Preguntas respondidas por este insight:

  • ¿Cuál es la tendencia de los cambios generales de recuento de perfiles?
  • ¿Qué causó picos o caídas significativos en el recuento de perfiles?
  • ¿Existen políticas de combinación específicas que impulsan el cambio en el recuento de perfiles?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT (sum(count_of_profiles) - sum(count_of_profiles_days_ago)) profiles_added
  FROM
    (SELECT sum(qsaccel.profile_agg.adwh_fact_profile.count_of_profiles) count_of_profiles,
            0 count_of_profiles_days_ago
    FROM qsaccel.profile_agg.adwh_fact_profile
    WHERE qsaccel.profile_agg.adwh_fact_profile.merge_policy_id = 2027892989
      AND qsaccel.profile_agg.adwh_fact_profile.date_key = '2024-01-10'
    UNION ALL SELECT 0 count_of_profiles,
                      CASE
                          WHEN sum(cntondatediff) =0 THEN sum(cntmin)
                          ELSE sum(cntondatediff)
                      END AS count_of_profiles_days_ago
    FROM
      (SELECT coalesce(sum(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles), 0) cntondatediff,
              0 cntmin
        FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
        WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id =2027892989
          AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key =dateadd(DAY, - 30, '2024-01-10')
        UNION ALL SELECT 0 cntondatediff,
                        sum(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles) countMin
        FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
        WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id = 2027892989
          AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key =
            (SELECT min(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key) col
            FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
            WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id =2027892989
              AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key >= dateadd(DAY, - 30, '2024-01-10')
              AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles IS NOT NULL) )b) a;

Consulte la Documentación del widget para cambiar el recuento de perfiles para obtener información sobre el aspecto y la funcionalidad de este insight.

Tendencia de cambio de recuento de perfiles profile-count-change-trend

Preguntas respondidas por este insight:

  • ¿Cuál es la tendencia general del cambio en el recuento de perfiles en los últimos 12 meses en función de la política de combinación?
  • ¿Hay patrones específicos o fluctuaciones en el cambio del recuento de perfiles en los últimos 30 días que requieren atención?
  • ¿En qué se diferencia el recuento de perfiles de los últimos 90 días de la tendencia general?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT date_key,
         profiles_count_change
  FROM
    (SELECT rn_num,
            date_key,
            (count_of_profiles-lag(count_of_profiles, 1, 0) over(
                                                            ORDER BY date_key))profiles_count_change
    FROM
      (SELECT qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key,
              sum(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles) count_of_profiles,
              row_number() OVER (
                              ORDER BY qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key) rn_num
      FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
  WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id = 2027892989
    AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key >=dateadd(DAY, - 30 -1, '2024-01-10')
  GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key)a)b
  WHERE rn_num > 1;

Consulte la documentación del widget de tendencia de cambio de recuento de perfiles para obtener información sobre la apariencia y la funcionalidad de este insight.

Tendencia de recuento de perfiles profile-count-trend

Preguntas respondidas por este insight:

  • ¿Cuál es la tendencia general en el recuento de perfiles en función de la política de combinación durante los últimos 30 días?
  • En base a esta tendencia, ¿cómo se compara con las tendencias a largo plazo (por ejemplo, 90 días y 12 meses)?
  • ¿Qué política de combinación contribuye más al aumento o la disminución del recuento de perfiles en los periodos de tiempo especificados (30 días, 90 días y 12 meses)?
  • ¿Hay algún pico o caída específicos en el recuento de perfiles que se correlacionan con determinados eventos o periodos dentro del periodo de tiempo de 30 días?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT date_key,
       sum(count_of_profiles) AS count_of_profiles
  FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines x
  INNER JOIN
    (SELECT MAX(process_date) last_process_date,
            merge_policy_id
     FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
     WHERE process_name = 'FACT_TABLES_PROCESSING'
       AND process_status = 'SUCCESSFUL'
     GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
  WHERE date_key >= dateadd(DAY, -365, y.last_process_date)
    AND x.merge_policy_id = 2027892989
  GROUP BY date_key;

Consulte la documentación del widget de tendencia de recuento de perfiles para obtener información sobre la apariencia y la funcionalidad de este insight.

Perfiles por identidad profiles-by-identity

Preguntas respondidas por este insight:

  • Entre el recuento total de perfiles, ¿qué tipo de identidad tiene una proporción más alta?
  • ¿Existen diferencias significativas entre los tipos de identidad?
  • ¿Cuál es la distribución general de los tipos de identidad?
  • ¿Existen disparidades o anomalías significativas en los recuentos de identidad?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
        sum(qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.count_of_profiles) count_of_profiles
  FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
  AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
  WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
    AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key = '2024-01-10'
  GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key,
          qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id,
          qsaccel.profile_agg.adwh_dim_namespaces.namespace_description
  ORDER BY count_of_profiles DESC;

Consulte la documentación de perfiles por widget de identidad para obtener información sobre el aspecto y la funcionalidad de este insight.

Tendencia de cambio de recuento de perfiles profiles-count-change-trend

Preguntas respondidas por este insight:

  • ¿Cuál es la tendencia general en el cambio del recuento de perfiles en los últimos 12 meses, según la política de combinación?
  • ¿Hay patrones específicos o fluctuaciones en el cambio del recuento de perfiles en los últimos 30 días que requieren atención?
  • ¿En qué se diferencia el cambio en el recuento de perfiles durante los últimos 90 días de la tendencia general?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT date_key,
         profiles_count_change
  FROM
    (SELECT rn_num,
            date_key,
            (count_of_profiles-lag(count_of_profiles, 1, 0) over(
                                                            ORDER BY date_key))profiles_count_change
    FROM
      (SELECT qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key,
              sum(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles) count_of_profiles,
              row_number() OVER (
                              ORDER BY qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key) rn_num
      FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
  WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id = 2027892989
    AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key >=dateadd(DAY, - 30 -1, '2024-01-10')
  GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key)a)b
  WHERE rn_num > 1;

Consulte la Documentación del widget de tendencia de cambio de recuento de perfiles para obtener información sobre la apariencia y la funcionalidad de este insight.

Tendencia de cambio de recuento de perfiles por identidad profiles-count-change-trend-by-identity

Preguntas respondidas por este insight:

  • ¿Cuál es la tendencia general en el cambio del recuento de perfiles en diferentes identidades durante los últimos 12 meses?
  • ¿Existen tendencias de identidad específicas que muestren cambios significativos en los últimos 30 días?
  • ¿En qué se diferencian los cambios en el recuento de perfiles al comparar las tendencias de 30 días, 90 días y 12 meses para una identidad particular?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT date_key,
        namespace_description,
        profiles_count_change
  FROM
    (SELECT rn_num,
            date_key,
            namespace_description,
            (count_of_profiles - lag(count_of_profiles, 1, 0) over(PARTITION BY namespace_description
                                                                  ORDER BY date_key)) profiles_count_change
    FROM
      (SELECT qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key,
              qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
              sum(qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.count_of_profiles) count_of_profiles,
              row_number() OVER (PARTITION BY qsaccel.profile_agg.adwh_dim_namespaces.namespace_description
                                  ORDER BY qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key) rn_num
        FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
        LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
        AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
        WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
          AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id= -1042977439
          AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key >= dateadd(DAY, - 30 -1, '2024-01-10')
        GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key,
                adwh_dim_namespaces.namespace_description)a)b
  WHERE rn_num > 1;

Consulte la Tendencia de cambio de recuento de perfiles por documentación del widget de identidad para obtener información sobre el aspecto y la funcionalidad de este insight.

Perfiles de identidad únicos single-identity-profiles

Preguntas respondidas por este insight:

  • ¿Mis datos de identidad de clientes se representan de forma coherente con identidades únicas?
  • ¿Qué porcentaje de mi base de usuarios consta de perfiles con un solo tipo de identidad?
  • De los perfiles con un solo tipo de identidad, ¿cómo afecta esto a la integridad del perfil?
  • ¿Existe una correlación entre el tipo de identidad más común y el recuento de perfiles de identidad único?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
       sum(qsaccel.profile_agg.adwh_fact_profile.count_of_Single_Identity_profiles) CNT
  FROM qsaccel.profile_agg.adwh_fact_profile
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_merge_policies ON qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_id=adwh_fact_profile.merge_policy_id
  WHERE qsaccel.profile_agg.adwh_fact_profile.date_key='2024-01-10'
    AND qsaccel.profile_agg.adwh_fact_profile.merge_policy_id = 2027892989
  GROUP BY qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name;

Consulte la documentación del widget de perfiles de identidad única para obtener información sobre el aspecto y la funcionalidad de este insight.

Perfiles de identidad únicos por identidad single-identity-profiles-by-identity

Preguntas respondidas por este insight:

  • ¿Cuántos clientes únicos se han registrado con una sola identidad (por ejemplo, correo electrónico o número de teléfono)?
  • ¿Cuál es la distribución de perfiles de identidad única entre diferentes tipos de identidad, como correo electrónico o números de teléfono?
  • ¿Hay patrones de identidad emergentes o cambios dentro de los perfiles de identidad únicos?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
        sum(qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.count_of_Single_Identity_profiles) count_of_Single_Identity_profiles
  FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
  AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
  WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
    AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key = '2024-01-10'
  GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key,
          qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id,
          qsaccel.profile_agg.adwh_dim_namespaces.namespace_description;

Consulte la documentación de perfiles de identidad única por widget de identidad para obtener información sobre el aspecto y la funcionalidad de este insight.

Perfiles no segmentados unsegmented-profiles

Preguntas respondidas por este insight:

  • ¿Cuántos perfiles no forman parte de una audiencia?
  • ¿Qué porcentaje de la audiencia total está representado por perfiles no segmentados?
  • ¿Contribuye alguna política de combinación a un gran número de perfiles no segmentados?
Seleccione para mostrar el SQL que genera este insight
code language-sql
SELECT qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
       sum(qsaccel.profile_agg.adwh_fact_profile.count_of_Orphan_profiles) CNT
  FROM qsaccel.profile_agg.adwh_fact_profile
  LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_merge_policies ON qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_id=adwh_fact_profile.merge_policy_id
  WHERE qsaccel.profile_agg.adwh_fact_profile.date_key='2024-01-10'
    AND qsaccel.profile_agg.adwh_fact_profile.merge_policy_id = 2027892989
  GROUP BY qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name;

Consulte la documentación del widget de perfiles no segmentados para obtener información sobre el aspecto y la funcionalidad de este insight.

Pasos siguientes

Al leer este documento, ahora comprende el SQL que genera perspectivas del panel y qué preguntas comunes resuelve este análisis. Ahora puede editar e iterar en SQL para generar sus propias perspectivas.

Consulte la Documentación de vista de SQL para obtener más información sobre cómo adaptar el SQL de sus perspectivas directamente a través de la IU de PLatform.

También puede leer y comprender el SQL que genera perspectivas para los paneles de Audiencias, Perfiles de cuenta y Destinos.

recommendation-more-help
ececc77d-ff44-4382-85ee-a087c8834323