Perspectivas de audiencias
Last update: Fri Nov 29 2024 00:00:00 GMT+0000 (Coordinated Universal Time)
Las perspectivas derivadas del análisis del modelo de datos hacen que los datos de Adobe Real-Time CDP sean más accesibles, comprensibles e impactantes para la toma de decisiones.
Comprenda sus perspectivas de audiencia accediendo al SQL que las alimenta y, a continuación, genere sus propias perspectivas para explorar aún más las identidades y perfiles que conforman sus audiencias. Transforme los datos sin procesar en nuevas perspectivas procesables mediante el uso del modelo de datos SQL de Real-Time CDP existente como inspiración para crear consultas para sus necesidades comerciales únicas.
Consulte la Documentación de vista de SQL para obtener más información sobre cómo adaptar el SQL de sus perspectivas directamente a través de la IU de PLatform.
Las siguientes perspectivas están disponibles para que las use como parte del tablero de audiencias o un tablero personalizado definido por el usuario. Consulte la descripción general de la personalización para obtener instrucciones sobre cómo personalizar el tablero o crear y editar nuevos widgets en la biblioteca de widgets y tablero definido por el usuario.
Las siguientes perspectivas están disponibles para que las use como parte del tablero de audiencias o un tablero personalizado.
Preguntas respondidas por esta perspectiva:
- ¿Cuáles son las 50 audiencias superpuestas más comunes de una audiencia filtrada concreta?
- ¿Cuáles son las 50 audiencias menos superpuestas de una audiencia filtrada concreta?
- ¿Cómo cambia el patrón superpuesto para una audiencia filtrada diferente?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT source_segment_name,
source_segment_id,
overlap_segment_name,
overlap_segment_id,
max(source_segment_audience_count) source_segment_audience_count,
max(overlap_segment_audience_count) overlap_segment_audience_count,
max(overlap_audience_count) overlap_audience_count,
CASE
WHEN (max(source_segment_audience_count) + max(overlap_segment_audience_count) - max(overlap_audience_count)) > 0 THEN (cast(max(overlap_audience_count) AS DECIMAL(18, 2)) / cast((max(source_segment_audience_count) + max(overlap_segment_audience_count) - max(overlap_audience_count)) AS DECIMAL(18, 2))) * 100::DECIMAL(9, 2)
ELSE 100.00
END overlapping_percentage
FROM
(SELECT adwh_fact_profile_overlap_of_segments.Segment1 source_segment_id,
adwh_fact_profile_overlap_of_segments.Segment2 overlap_segment_id,
Sum(count_of_overlap) overlap_audience_count
FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.Segment2 ,
qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.Segment1) a
INNER JOIN
(SELECT sum(count_of_profiles) source_segment_audience_count,
adwh_dim_segments.segment_name source_segment_name,
adwh_fact_profile_by_segment_trendlines.merge_policy_id,
adwh_fact_profile_by_segment_trendlines.segment_Id segment1
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_dim_segments.segment_id = qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_dim_segments.segment_name,
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id,
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id) b ON a.source_segment_id = b.segment1
INNER JOIN
(SELECT sum(count_of_profiles) overlap_segment_audience_count,
adwh_dim_segments.segment_name overlap_segment_name,
adwh_fact_profile_by_segment_trendlines.merge_policy_id,
adwh_fact_profile_by_segment_trendlines.segment_Id segment2
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
JOIN qsaccel.profile_agg.adwh_dim_segments ON adwh_dim_segments.segment_id = adwh_fact_profile_by_segment_trendlines.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_dim_segments.segment_name,
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id,
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id) c ON a.overlap_segment_id = c.segment2
GROUP BY source_segment_name,
source_segment_id,
overlap_segment_name,
overlap_segment_id
ORDER BY overlapping_percentage DESC
LIMIT 5;
|
Consulte la documentación del widget de informe de superposición de audiencias para obtener información sobre el aspecto y la funcionalidad de esta perspectiva.
Superposición de público audience-overlap
Preguntas respondidas por esta perspectiva:
- ¿Qué perfiles son comunes a ambas audiencias?
- ¿Cómo afecta la superposición a las tasas de participación o conversión?
- ¿Cómo se pueden adaptar las estrategias de marketing al segmento superpuesto?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT Sum(overlap_col1) overlap_col1,
Sum(overlap_col2) overlap_col2,
Sum(overlap_count) Overlap_count
FROM
(SELECT 0 overlap_col1,
0 overlap_col2,
sum(count_of_overlap)Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 1133248113
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
AND ((qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=1870062812
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=2080256533)
OR (qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=2080256533
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=1870062812))
UNION ALL SELECT sum(count_of_profiles) overlap_col1,
0 overlap_col2,
0 overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
LEFT JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1133248113
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 1870062812
UNION ALL SELECT 0 overlap_col1,
sum(count_of_profiles) overlap_col2,
0 Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1133248113
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 2080256533 ) a;
|
Consulte la documentación del widget de superposición de audiencias para obtener información sobre el aspecto y la funcionalidad de esta perspectiva.
Tend. cambio tmñ público audience-size-change-trend
Preguntas respondidas por esta perspectiva:
- ¿Ha habido picos o caídas significativos en el tamaño de la audiencia en los últimos 30 días, 90 días o 12 meses?
- ¿Cómo cambia el tamaño de la audiencia durante días específicos?
- ¿Se han detectado anomalías o patrones repetidos de picos o caídas en los últimos 12 meses?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT date_key,
Profiles_added
FROM
(SELECT rn_num,
date_key,
(count_of_profiles-lag(count_of_profiles, 1, 0) over(
ORDER BY date_key))Profiles_added
FROM
(SELECT date_key,
sum(x.count_of_profiles)count_of_profiles,
row_number() OVER (
ORDER BY date_key) rn_num
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines x
INNER JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
WHERE segment_id = 1333234510
AND x.date_key >= dateadd(DAY, -30 -1, y.last_process_date)
GROUP BY x.date_key) a)b
WHERE rn_num > 1;
|
Consulte la documentación del widget de tendencia de cambio de tamaño de audiencia para obtener información sobre la apariencia y la funcionalidad de esta perspectiva.
Tendencia del tamaño del público por identidad audience-size-trend-by-identity
Preguntas respondidas por esta perspectiva:
- ¿Mi audiencia crece, se estabiliza o experimenta fluctuaciones de forma constante?
- ¿Hay alguna identidad específica que tenga picos o caídas en el crecimiento de la audiencia con el paso del tiempo?
- ¿Hay alguna anomalía en el crecimiento de mi identidad a lo largo del tiempo?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT sum(count_of_profiles) AS identities,
date_key
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines x
INNER JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
INNER JOIN qsaccel.profile_agg.adwh_dim_namespaces z ON x.namespace_id = z.namespace_id
AND x.merge_policy_id = z.merge_policy_id
WHERE x.date_key >= dateadd(DAY, -30, y.last_process_date)
AND x.segment_id = 1333234510
AND z.namespace_description = 'crmid'
GROUP BY date_key;
|
Consulte la tendencia de tamaño de audiencia según la documentación del widget de identidad para obtener información sobre la apariencia y la funcionalidad de esta perspectiva.
Tendencia de tamaño de audiencia audience-size-trend
Preguntas respondidas por esta perspectiva:
- ¿Cómo ha cambiado el tamaño de la audiencia con el paso del tiempo, incluidas las anomalías?
- ¿Cómo puedo encontrar la tendencia general en el tamaño de la audiencia en los períodos de: 30 días, 90 días y 12 meses?
- ¿Cuáles son las características clave de la audiencia que contribuyen a su tamaño? Por ejemplo, los picos debidos a campañas de marketing por correo electrónico.
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT date_key,
sum(count_of_profiles) AS audience_size
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines x
INNER JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
WHERE date_key >= dateadd(DAY, -30, y.last_process_date)
AND x.segment_id = 1333234510
GROUP BY date_key,
segment_id;
|
Consulte la documentación del widget de tendencia de tamaño de audiencia para obtener información sobre la apariencia y la funcionalidad de esta perspectiva.
Tamaño de público audience-size
Preguntas respondidas por esta perspectiva:
- ¿Cuál es el tamaño total actual de la audiencia?
- ¿En qué se diferencia el tamaño de audiencia actual de períodos anteriores o de audiencias específicas?
- ¿Cuál es el impacto de las campañas de marketing recientes en el tamaño de la audiencia?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT
sum(
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.count_of_profiles
) count_of_profiles
FROM
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id = qsaccel.profile_agg.adwh_dim_segments.segment_id
WHERE
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id = -1323307941
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1914917902
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-12';
|
Consulte la documentación del widget de tamaño de audiencia para obtener información sobre el aspecto y la funcionalidad de esta perspectiva.
Distribución de puntuaciones de inteligencia artificial aplicada al cliente customer-ai-distribution-of-scores
Preguntas respondidas por esta perspectiva:
- ¿Cuál es la distribución de puntuación para cada bloque de mi modelo de inteligencia artificial aplicada al cliente, filtrado por una audiencia seleccionada?
- ¿Cuál es la distribución de puntuación de alta, media y baja para una audiencia concreta?
- ¿Cuál es el desglose de la distribución de puntuación por distintas audiencias de interés?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT b.model_name,
b.model_type,
c.segment_name,
c.segment_id,
CASE
WHEN score >= 0
AND score < 25 THEN 'LOW'
WHEN score >= 25
AND score < 75 THEN 'MEDIUM'
WHEN score >= 75
AND score <= 100 THEN 'HIGH'
END bucket_name,
CASE
WHEN score >= 0
AND score < 5 THEN '02.50'
WHEN score >= 5
AND score < 10 THEN '07.50'
WHEN score >= 10
AND score < 15 THEN '12.50'
WHEN score >= 15
AND score < 20 THEN '17.50'
WHEN score >= 20
AND score < 25 THEN '22.50'
WHEN score >= 25
AND score < 30 THEN '27.50'
WHEN score >= 30
AND score < 35 THEN '32.50'
WHEN score >= 35
AND score < 40 THEN '37.50'
WHEN score >= 40
AND score < 45 THEN '42.50'
WHEN score >= 45
AND score < 50 THEN '47.50'
WHEN score >= 50
AND score < 55 THEN '52.50'
WHEN score >= 55
AND score < 60 THEN '57.50'
WHEN score >= 60
AND score < 65 THEN '62.50'
WHEN score >= 65
AND score < 70 THEN '67.50'
WHEN score >= 70
AND score < 75 THEN '72.50'
WHEN score >= 75
AND score < 80 THEN '77.50'
WHEN score >= 80
AND score < 85 THEN '82.50'
WHEN score >= 85
AND score < 90 THEN '87.50'
WHEN score >= 90
AND score < 95 THEN '92.50'
WHEN score >= 95
AND score <= 100 THEN '97.50'
END score_bins,
Sum(CASE
WHEN score >= 0
AND score < 25 THEN count_of_profiles
WHEN score >= 25
AND score < 75 THEN count_of_profiles
WHEN score >= 75
AND score <= 100 THEN count_of_profiles
END) count_of_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_ai_models a
JOIN qsaccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id = b.merge_policy_id
AND a.model_id = b.model_id
JOIN qsaccel.profile_agg.adwh_dim_segments c ON a.segment_id = c.segment_id
WHERE a.merge_policy_id = 1133248113
AND a.model_id = 1829081696
AND a.segment_id = 1870062812
AND score_date =
(SELECT MAX(score_date)
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_ai_models d
WHERE d.model_id = a.model_id) GROUP BY b.model_name,
b.model_type,
c.segment_name,
c.segment_id,
CASE
WHEN score >= 0
AND score < 25 THEN 'LOW'
WHEN score >= 25
AND score < 75 THEN 'MEDIUM'
WHEN score >= 75
AND score <= 100 THEN 'HIGH'
END,
CASE
WHEN score >= 0
AND score < 5 THEN '02.50'
WHEN score >= 5
AND score < 10 THEN '07.50'
WHEN score >= 10
AND score < 15 THEN '12.50'
WHEN score >= 15
AND score < 20 THEN '17.50'
WHEN score >= 20
AND score < 25 THEN '22.50'
WHEN score >= 25
AND score < 30 THEN '27.50'
WHEN score >= 30
AND score < 35 THEN '32.50'
WHEN score >= 35
AND score < 40 THEN '37.50'
WHEN score >= 40
AND score < 45 THEN '42.50'
WHEN score >= 45
AND score < 50 THEN '47.50'
WHEN score >= 50
AND score < 55 THEN '52.50'
WHEN score >= 55
AND score < 60 THEN '57.50'
WHEN score >= 60
AND score < 65 THEN '62.50'
WHEN score >= 65
AND score < 70 THEN '67.50'
WHEN score >= 70
AND score < 75 THEN '72.50'
WHEN score >= 75
AND score < 80 THEN '77.50'
WHEN score >= 80
AND score < 85 THEN '82.50'
WHEN score >= 85
AND score < 90 THEN '87.50'
WHEN score >= 90
AND score < 95 THEN '92.50'
WHEN score >= 95
AND score <= 100 THEN '97.50'
END;
|
Consulte la documentación del widget de distribución de puntuaciones de inteligencia artificial aplicada al cliente para obtener información sobre la apariencia y la funcionalidad de esta perspectiva.
Resumen de puntuaciones de la inteligencia artificial aplicada al cliente customer-ai-scoring-summary
Preguntas respondidas por esta perspectiva:
- ¿Cuál es el resumen de puntuación de cada uno de mis modelos de inteligencia artificial aplicada al cliente para una audiencia concreta?
- ¿Cómo cambian mis puntuaciones de tendencia de inteligencia artificial aplicada al cliente para diferentes audiencias?
- ¿En qué se diferencia mi resumen de puntuación de los demás KPI de la información general de audiencia?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT model_name,
model_type,
segment_name,
CASE
WHEN score BETWEEN 0 AND 24 THEN 'LOW'
WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
END score_buckets,
sum(count_of_profiles) count_of_profiles
FROM QSAccel.profile_agg.adwh_fact_profile_by_segment_ai_models a
JOIN QSAccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id=b.merge_policy_id
AND a.model_id=b.model_id
JOIN QSAccel.profile_agg.adwh_dim_segments c ON a.segment_id=c.segment_id
WHERE a.merge_policy_id=1133248113
AND a.model_id =1829081696
AND a.segment_id=1870062812
AND score_date=
(SELECT max(score_date)
FROM QSAccel.profile_agg.adwh_fact_profile_by_segment_ai_models d
WHERE d.model_id=a.model_id)
GROUP BY model_name,
model_type,
segment_name,
CASE
WHEN score BETWEEN 0 AND 24 THEN 'LOW'
WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
END;
|
Consulte la documentación del widget de resumen de puntuación de inteligencia artificial aplicada al cliente para obtener información sobre la apariencia y la funcionalidad de esta perspectiva.
Superposición de identidad identity-overlap
Preguntas respondidas por esta perspectiva:
- ¿Cuál es la intersección común entre Tipo de identidad A y Tipo de identidad B para una audiencia filtrada?
- ¿Cómo refino las audiencias de los clientes en función de la superposición de tipos de identidad específicos para mejorar las estrategias de marketing segmentadas?
- ¿Qué perspectivas se pueden obtener de la evaluación del rendimiento de la campaña dentro de las áreas de intersección?
- En función de estas perspectivas, ¿cómo se pueden optimizar los esfuerzos de marketing futuros?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT Sum(overlap_col1) overlap_col1,
Sum(overlap_col2) overlap_col2,
Sum(overlap_count) Overlap_count
FROM
(SELECT 0 overlap_col1,
0 overlap_col2,
Sum(count_of_profiles) Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment
WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.segment_id = 1333234510
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.overlap_id IN
(SELECT a.overlap_id
FROM
(SELECT qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id overlap_id,
count(*) cnt_num
FROM qsaccel.profile_agg.adwh_dim_overlap_namespaces
WHERE qsaccel.profile_agg.adwh_dim_overlap_namespaces.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_namespaces in ('crmid',
'email')
GROUP BY qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id)a
WHERE a.cnt_num>1 )
UNION ALL SELECT count_of_profiles overlap_col1,
0 overlap_col2,
0 Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'crmid'
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10'
UNION ALL SELECT 0 overlap_col1,
count_of_profiles overlap_col2,
0 Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'email'
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10' ) a;
|
Consulte la documentación del widget de superposición de identidad para obtener información sobre el aspecto y la funcionalidad de esta perspectiva.
Perfiles por identidad profiles-by-identity
Preguntas respondidas por esta perspectiva:
- ¿Qué tipo de identidad tiene la mayor proporción dentro del recuento total de perfiles para una audiencia seleccionada?
- ¿Existen disparidades significativas entre los tipos de identidad para una audiencia seleccionada?
- ¿Cuál es la distribución general de los tipos de identidad por audiencia?
- ¿Existen disparidades o anomalías significativas en los recuentos de identidad para distintas audiencias?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
sum(qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.count_of_profiles) count_of_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_dim_namespaces.namespace_description
ORDER BY count_of_profiles DESC;
|
Consulte la documentación del widget Perfiles por identidad para obtener información sobre el aspecto y la funcionalidad de esta perspectiva.
Activaciones programadas scheduled-activations
Preguntas respondidas por esta perspectiva:
- ¿Cuáles son las fechas de inicio y finalización de las activaciones de mayor rendimiento para una audiencia concreta en una plataforma específica?
- ¿Qué plataformas se utilizaron más para las activaciones programadas de una audiencia concreta?
- ¿Hay algún patrón en el uso de la plataforma que pueda guiar las decisiones sobre la priorización o diversificación de las estrategias de activación para una audiencia específica?
Seleccione para mostrar el SQL que genera esta perspectiva
code language-sql |
SELECT p.destination_platform ,
p.destination_platform_name AS platform ,
d.destination_name ,
d.destination ,
br.start_date ,
CASE
WHEN br.end_date = '9999-12-31' THEN 'Ongoing'
ELSE br.end_date
END AS end_date
FROM qsaccel.profile_agg.adwh_dim_br_segment_destinations br
JOIN qsaccel.profile_agg.adwh_dim_destination d ON br.destination_id = d.destination_id
JOIN qsaccel.profile_agg.adwh_dim_destination_platform p ON d.destination_platform_id = p.destination_platform_id
JOIN
(SELECT MAX(process_date) AS last_process_date
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL' ) lpd ON lpd.last_process_date BETWEEN br.start_date AND br.end_date
AND br.segment_id = 1333234510;
|
Consulte la documentación del widget de activaciones programadas para obtener información sobre el aspecto y la funcionalidad de esta perspectiva.
Pasos siguientes
Al leer este documento, ahora comprende el SQL que genera perspectivas del panel y qué preguntas comunes resuelve este análisis. Ahora puede editar e iterar en SQL para generar sus propias perspectivas.
Consulte la Documentación de vista de SQL para obtener más información sobre cómo adaptar el SQL de sus perspectivas directamente a través de la IU de PLatform.
También puede leer y comprender el SQL que genera perspectivas para los paneles de Perfiles, Perfiles de cuenta y Destinos.
ececc77d-ff44-4382-85ee-a087c8834323