PREMIUM Crear criterios

Criterios en Adobe Target Recommendations controle el contenido de su Recommendations actividades. Cree criterios para mostrar las recomendaciones que más se ajusten a su actividad. Estos criterios utilizan las acciones del visitante para determinar qué contenido o productos mostrar.

En las siguientes secciones se explica cómo crear un nuevo criterio.

Acceso a la pantalla Crear nuevo criterio

Existen varias maneras de llegar a la pantalla Crear nuevos criterios. Algunas opciones de pantalla dependen de cómo llega a la pantalla.

  • En el Recommendations > Criterios pantalla biblioteca, haga clic en Crear criterios > Crear criterios. Los criterios que crea aquí quedan disponibles automáticamente para todas las actividades de Recommendations.
  • Al crear un Recommendations actividad que utiliza la variable Compositor de experiencias visuales (VEC), se le redirige inmediatamente al Seleccionar criterios después de seleccionar un elemento en la página y hacer clic en Reemplazar con Recommendations, Insertar Recommendations anteso Insertar Recommendations después. A continuación, puede seleccionar un criterio disponible o hacer clic en Crear criterios. Si crea un nuevo criterio, tiene la opción de guardar los criterios para usarlos con otros Recommendations actividades. Para obtener más información, consulte Crear una actividad de Recommendations.
  • Cuando esté editando una Recommendationsactividad, haga clic en el cuadro Ubicación de Recommendations de la página y seleccione Cambiar criterios. En el Seleccionar criterios pantalla, haga clic en Crear criterios. Tendrá la opción de guardar los nuevos criterios para usarlos con otras actividades de Recommendations.

Los siguientes pasos suponen que accede a la variable Crear nuevos criterios utilizando el primer método: el Recommendations > Criterios biblioteca.

  1. Haga clic en Recommendations > Criterios.

  2. Haga clic en Crear criterios > Crear criterios.

    Crear nuevos criterios

  3. Configure la información en las secciones siguientes.

Información básica

  1. Escriba un Nombre de criterio.

    Es el nombre “interno” que se usa para describir los criterios. Por ejemplo, quizá use el nombre “Productos con más margen” para los criterios, pero es probable que no quiera que ese título se muestre al público. Consulte el paso siguiente para establecer el título que se presenta al público.

    Sección Información básica

  2. Escriba un Título que se mostrará a la audiencia para que aparezca en la página para todas las recomendaciones que usen este criterio.

    Por ejemplo, una idea es mostrar “Las personas que han visto esto también vieron” o “Productos similares” cuando use estos criterios para mostrar recomendaciones.

  3. Escriba una breve Descripción del criterio.

    La descripción debería ayudarle a identificar el criterio y puede incluir información sobre la finalidad del criterio.

  4. Seleccione un sector en función de los objetivos de la actividad de recomendaciones.

    Sector Objetivo
    Venta minorista/Comercio electrónico Conversión que termina en compra
    Generación de vanguardia/B2B/Servicios financieros Conversión sin compra
    Medios/Publicación Participación

    Otras opciones de criterios cambiarán según el sector que seleccione.

  5. Seleccione un Tipo de página.

    Puede seleccionar varios tipos de página.

    En conjunto, el sector y los tipos de página se usan para categorizar los criterios guardados, facilitando su reutilización para otras actividades de Recommendations.

Algoritmo de Recommendations

  1. Seleccione un Tipo de algoritmo y Algoritmo:

    Sección Algoritmo recomendado

    Tipo de algoritmo Cuándo se utiliza Algoritmos disponibles
    Basado en el carro de compras Realice recomendaciones basadas en el contenido del carro de compras del usuario.
    • Los usuarios que vieron esto, vieron aquéllos
    • Los usuarios que vieron esto, compraron aquéllos
    • Las personas que compraron estos, compraron esos
    Basado en popularidad Haga recomendaciones en función de la popularidad general de un artículo en todo el sitio o de la popularidad de artículos dentro de la categoría, marca, género, etc. favorita del usuario o los más vistos.
    • Más visitados en todo el sitio
    • Más visitados por categoría
    • Más visitados por atributo de artículo
    • Principales vendedores del sitio
    • Principales vendedores por categoría
    • Principales vendedores por atributo de artículo
    • Principales por métrica de Analytics
    Basado en elementos Realice recomendaciones basadas en la búsqueda de artículos similares a un elemento que el usuario esté viendo o que haya visto recientemente.
    • Los usuarios que vieron esto, vieron aquello.
    • Los usuarios que vieron esto, compraron aquello.
    • Los usuarios que compraron esto, compraron aquello.
    • Elementos con atributos similares
    Basado en el usuario Recomendaciones basadas en el comportamiento del usuario.
    • Artículos vistos recientemente.
    • Recomendado para usted
    Criterios personalizados Realice recomendaciones basadas en un archivo personalizado que cargue.
    • Algoritmo personalizado
    NOTA

    Si selecciona Elementos/ Medios con atributos similares, tendrá la opción de configurar reglas de similitud de contenido.

  2. Si es necesario, seleccione una Atributo de elemento y Atributo de perfil que coincida, Clave de recomendación, Tecla de filtrado y/o Métrica de Analytics para configurar el algoritmo.

Las demás opciones de configuración del algoritmo varían en función del algoritmo seleccionado. Para finalizar la configuración del algoritmo, seleccione una Clave de recomendación, Tecla de filtrado, Base de coincidencia, Métrica de Analyticsy/o Atributo de elemento y Atributo de perfil que coincida.

Para obtener más información sobre cómo elegir un Clave de recomendación, consulte Basar la recomendación en una clave de recomendación.

Fuente de datos

  1. Seleccione el Fuente de datos de comportamiento: Adobe Target o Analytics.

    NOTA

    La variable Fuente de datos de comportamiento solo se muestra si su implementación utiliza Analytics para Target (A4T).

    Sección de fuentes de datos de comportamiento

    Si elige Analytics, seleccione el grupo de informes deseado.

    Si los criterios utilizan Adobe Analytics como fuente de datos de comportamiento, una vez creada, el tiempo de disponibilidad de los criterios depende de si el grupo de informes seleccionado y la ventana de vista al pasado se han utilizado para otros criterios, como se explica a continuación:

    • Configuración de grupos de informes única: La primera vez que se utiliza un grupo de informes con una ventana retrospectiva de intervalo de datos determinada, Target Recommendations puede tardar de dos a siete días en descargar completamente los datos de comportamiento del grupo de informes seleccionado de Analytics. Este lapso de tiempo depende de la variable Analytics carga del sistema.
    • Criterios nuevos o editados que usan un grupo de informes ya disponible: Al crear un nuevo criterio o editar uno existente, si el grupo de informes seleccionado ya se ha utilizado con Target Recommendations con un intervalo de datos igual o inferior al seleccionado, entonces los datos estarán disponibles inmediatamente y no se requiere una configuración única. En este caso, o si la configuración de un algoritmo se edita sin modificar el grupo de informes o el intervalo de datos seleccionado, el algoritmo se ejecuta o vuelve a ejecutarse en un plazo de 12 horas.
    • Se ejecuta el algoritmo en curso: Los datos fluyen desde Analytics a Target Recommendations diariamente. Por ejemplo, para la recomendación Afinidad de visualización, cuando un usuario ve un producto, se pasa una llamada de seguimiento de visualización de producto a Analytics casi en tiempo real. Los datos de Analytics se insertan en Target al principio del día siguiente y Target ejecuta el algoritmo en menos de 12 horas.

    Para obtener más información, consulte Uso de Adobe Analytics con Target Recommendations.

  2. Configure las variables Ventana retroactiva para determinar el intervalo de tiempo de los datos históricos de comportamiento del usuario disponibles para usar al determinar qué recomendaciones mostrar. Esta opción está disponible para todos los algoritmos, a excepción de los elementos con atributos similares y algoritmos personalizados.

    Control deslizante de la ventana retrospectiva

    Si el sitio tiene mucho tráfico y los comportamientos cambian con frecuencia, elija un período de datos más breve. Un periodo más breve permite a Recommendationsresponder mejor a los cambios del mercado y de su empresa. Por ejemplo, un periodo breve significa que Recommendationsdetectará cambios en el comportamiento de los visitantes a medida que estos comiencen a realizar compras de temporada, como las compras de vuelta al colegio o las compras navideñas, y recomendará artículos apropiados para esas temporadas.

    Si no dispone de muchos datos o el comportamiento de los visitantes no cambia con frecuencia, puede elegir un período de tiempo más largo. Sin embargo, para muchos sitios, un periodo más breve resulta en recomendaciones de mayor calidad.

    Los intervalos de fechas que hay disponibles son:

    Opción Ventana retroactiva Frecuencia actualizada (se muestra al pasar el ratón) Algoritmos admitidos
    Seis horas El algoritmo se ejecuta cada 3-6 horas Basado en popularidad algoritmos cuando se selecciona Fuente de datos de comportamiento es Adobe Target
    Un día El algoritmo se ejecuta cada 12-24 horas Basado en popularidad algoritmos
    Dos días El algoritmo se ejecuta cada 12-24 horas
    • Basado en popularidad algoritmos
    • Basado en elementos algoritmos
    • Basado en el usuario algoritmos
    • Basado en el carro de compras algoritmos
    Una semana El algoritmo se ejecuta cada 24-48 horas
    • Basado en popularidad algoritmos
    • Basado en elementos algoritmos
    • Basado en el usuario algoritmos
    • Basado en el carro de compras algoritmos
    Dos semanas El algoritmo se ejecuta cada 24-48 horas
    • Basado en popularidad algoritmos
    • Basado en elementos algoritmos
    • Todo Basado en el usuario algoritmos
    • Basado en el carro de compras algoritmos
    Un mes (30 días) El algoritmo se ejecuta cada 24-48 horas
    • Basado en popularidad algoritmos
    • Basado en elementos algoritmos
    • Basado en el usuario algoritmos
    • Basado en el carro de compras algoritmos
    Dos meses (61 días) El algoritmo se ejecuta cada 24-48 horas
    • Basado en popularidad algoritmos
    • Basado en elementos algoritmos
    • Basado en el usuario algoritmos
    • Basado en el carro de compras algoritmos

Contenido de copia de seguridad

Contenido de copia de seguridad las reglas determinan qué sucede si el número de artículos recomendados no rellena el diseño de recomendaciones. Es posible que algunos criterios de Recommendations devuelvan menos recomendaciones que las que exige el diseño. Por ejemplo, si el diseño tiene espacios para cuatro artículos, pero los criterios hacen que solo se recomienden dos artículos, puede dejar vacíos los espacios restantes, puede usar recomendaciones de copia de seguridad para rellenar los espacios adicionales o puede optar por no mostrar ninguna recomendación.

Sección de contenido

  1. (Opcional) Deslice la Representación parcial de diseño cambie a la posición "activado".

    Se rellenarán tantas ranuras como sea posible, pero la plantilla de diseño puede incluir espacio en blanco para las ranuras restantes. Si esta opción está desactivada y no hay suficiente contenido para llenar todas las ranuras disponibles, las recomendaciones no se proporcionan y se muestra el contenido predeterminado en su lugar.

    Active esta opción si desea que las recomendaciones se proporcionen con espacios en blanco. Utilice las recomendaciones de copia de seguridad si desea que las ranuras de recomendación se llenen de contenido según sus criterios con espacios vacíos llenos de contenido similar o popular de su sitio, como se explica en el paso siguiente.

  2. (Opcional) Deslice la Mostrar contenido de copia de seguridad cambie a la posición "activado".

    Rellene los espacios vacíos restantes del diseño con una selección aleatoria de los productos más vistos de su sitio.

    El uso de recomendaciones de copia de seguridad garantiza que el diseño de las recomendaciones llene todos los espacios disponibles. Supongamos que tiene un diseño de 4 x 1, como se ilustra a continuación:

    4 x 1 diseño

    Supongamos que los criterios hacen que solo se recomienden dos artículos. Si activa la variable Representación parcial de diseño , las dos primeras ranuras se rellenan, pero las dos ranuras restantes permanecen vacías. Sin embargo, si activa la variable Mostrar copia de seguridad de Recommendations , las dos primeras ranuras se rellenan según los criterios especificados y las dos ranuras restantes se rellenan según las recomendaciones de copia de seguridad.

    La siguiente matriz muestra el resultado que observará al usar la variable Representación parcial de diseño y Contenido de copia de seguridad opciones:

    Procesamiento de diseño parcial Contenido de copia de seguridad Resultado
    Deshabilitado Deshabilitado Si se devuelven menos recomendaciones que las que llama el diseño, el diseño de recomendaciones se reemplaza por el contenido predeterminado y no se muestran recomendaciones.
    Habilitado Deshabilitado Se procesa el diseño, pero puede incluir espacio en blanco si se devuelven menos recomendaciones que las que llama el diseño.
    Habilitado Habilitado Las recomendaciones de copia de seguridad llenarán “ranuras” de diseño disponible, procesando completamente el diseño.
    Si la aplicación de reglas de inclusión a las recomendaciones de copia de seguridad restringe el número de recomendaciones de copia de seguridad correspondiente al punto de que no se pueda llenar el diseño, se procesa parcialmente el diseño.
    Si el criterio no devuelve ninguna recomendación, y las reglas de inclusión restringen las recomendaciones de copia de seguridad a cero, el diseño se reemplaza por el Contenido predeterminado.
    Deshabilitado Habilitado Las recomendaciones de copia de seguridad llenarán “ranuras” de diseño disponible, procesando completamente el diseño.
    Si la aplicación de reglas de inclusión a las recomendaciones de copia de seguridad restringe el número de recomendaciones de copia de seguridad correspondiente al punto de que no se pueda llenar el diseño, el diseño se reemplaza por el contenido predeterminado y no se muestran recomendaciones.

    Para obtener más información, consulte Usar una recomendación de copia de seguridad.

  3. (Condicional) Si ha seleccionado Mostrar contenido de copia de seguridad en el paso anterior, puede activar Aplicar reglas de inclusión a recomendaciones de copia de seguridad.

    Las reglas de inclusión determinan qué artículos se incluyen en las recomendaciones. Las opciones disponibles dependen del sector.

    Para obtener más información, consulte Especificar reglas de inclusión más abajo.

  4. (Opcional) Deslice la Recomendar artículos comprados anteriormente cambie a la posición "activado".

    Esta configuración se basa en productPurchasedId. El comportamiento predeterminado es no recomendar artículos comprados previamente. En la mayoría de los casos, no desea promocionar artículos que un cliente haya comprado recientemente. Es útil si vende artículos que la gente suele comprar solo una vez como, por ejemplo, canoas. Si vende artículos que la gente vuelve a comprar repetidamente, como champú u otros artículos personales, debe activar esta opción.

Similitud de contenido

Use reglas de similitud de contenido para hacer recomendaciones según los atributos de artículos o medios.

NOTA

Si ha seleccionado Basado en elementos/ Medios con atributos similares como tipo de algoritmo y algoritmo, tiene la opción de establecer reglas de similitud de contenido.

La similitud de contenido compara palabras clave de los atributos de los artículos y realiza recomendaciones basándose en la cantidad de palabras clave que los artículos tienen en común. Las recomendaciones que se basan en la similitud de contenido no requieren información anterior para ofrecer buenos resultados.

Resulta especialmente eficaz usar la similitud de contenido para generar recomendaciones en los artículos nuevos, ya que es poco probable que estos aparezcan en las recomendaciones usando Otras personas que vieron esto también vieron y otras lógicas basadas en el comportamiento anterior. También puede utilizar la similitud de contenido si quiere generar recomendaciones útiles para los nuevos visitantes, que no han hecho ninguna compra ni tienen datos históricos.

Al seleccionar Basado en elementos/ Medios con atributos similares, tiene la opción de crear reglas para aumentar o reducir la importancia de atributos de artículos específicos a la hora de determinar las recomendaciones. En el caso de artículos como libros, puede aumentar la importancia de atributos como el género, el autor o la serie para recomendar libros parecidos.

Como la similitud de contenido emplea palabras clave para comparar los artículos, algunos atributos, como mensaje o descripción, pueden producir “ruido” en la comparación. Puede crear reglas para pasar por alto estos atributos.

De forma predeterminada, todos los atributos están definidos en Línea de base. Solo es necesario crear una regla si quiere cambiar esta configuración.

NOTA

El algoritmo de similitud de contenido puede utilizar muestreo aleatorio para calcular similitudes entre elementos. Como resultado, las clasificaciones de similitud entre artículos pueden variar entre ejecuciones de algoritmos.

Reglas de inclusión

Existen varias opciones que le ayudan a reducir el número de artículos que aparecen en las recomendaciones. Puede utilizar reglas de exclusión al crear criterios o promociones.

Reglas de inclusión

Las reglas de inclusión son opcionales, pero definir estos detalles permite controlar mejor los artículos que aparecen en las recomendaciones. Cada detalle que se configure reduce un poco más los criterios de visualización.

Por ejemplo, puede que desee mostrar únicamente los zapatos de mujer que tengan un precio entre 25 y 45 dólares y de los que haya más de 50 pares disponibles en el inventario. También puede ponderar cada atributo para que los artículos que son más importantes para su negocio tengan más posibilidades de aparecer.

Otro ejemplo: puede elegir mostrar ofertas de trabajo solo a quienes visiten su sitio desde determinadas ciudades, o tengan una determinada titulación universitaria.

Las opciones de reglas de inclusión varían por sector. De forma predeterminada, las reglas de inclusión se aplican a recomendaciones de copia de seguridad.

IMPORTANTE

Debería usar las reglas de inclusión con cautela. Estos filtros son útiles si, por ejemplo, su organización ha establecido reglas que exigen que una marca no se recomiende al mismo tiempo que se está viendo otra marca. Sin embargo, esta función tiene un coste de oportunidad, ya que posiblemente pueda perder un porcentaje de alza al restringir la presentación de algunos elementos que normalmente se mostrarían con los criterios de la actividad.

Las reglas de inclusión se unen mediante Y. Deben cumplirse todas las reglas para incluir un artículo en una recomendación.

Para crear una regla de inclusión sencilla, como se mencionó, previamente, que muestre únicamente zapatos de mujer de entre 25 y 45 dólares y de los que haya más de 50 pares en el inventario, siga los pasos siguientes:

  1. Establezca un rango de precios para los productos que desea recomendar.

  2. Defina la cantidad mínima en inventario para los productos que desea recomendar.

  3. Configure la recomendación para que únicamente muestre los artículos cuando cumplan determinados criterios.

    Puede especificar que los artículos se incluyan solamente cuando uno de los atributos de la lista cumpla o no una o varias condiciones especificadas.

    Los evaluadores que hay disponibles dependen del valor que elija en la primera lista desplegable. Puede listar varios elementos. Estos artículos se evaluarán con O.

    Si hay varias reglas, se combinan con una Y.

    NOTA

    Esta opción limita los artículos mostrados en la recomendación. No afecta a las páginas en las que aparece la recomendación. Para limitar dónde se muestra la recomendación, seleccione las páginas en el Compositor de experiencias visuales.

Para obtener más información, consulte Uso de reglas de inclusión dinámicas y estáticas.

Ponderación de atributos

Puede agregar varias reglas para "desplazar" el algoritmo en función de información o metadatos importantes sobre el catálogo de contenido, de modo que es más probable que se muestren ciertos elementos.

Por ejemplo, puede aplicar una ponderación más alta para artículos en venta de modo que aparezcan con más frecuencia en la recomendación. Los artículos que no están en liquidación no quedan completamente excluidos, pero aparecen con menos frecuencia. Se pueden aplicar múltiples atributos ponderados al mismo algoritmo y los atributos ponderados se pueden probar sobre el tráfico dividido en la recomendación.

  1. Elija un valor.

    Determina el tipo de elemento que es más probable que se muestre, en función de uno de los numerosos criterios disponibles.

  2. Elija un evaluador.

  3. Escriba la palabra clave para completar los atributos de la regla.

    Por ejemplo, la regla completa podría ser "La categoría contiene zapatos de subcadena".

  4. Seleccione la ponderación para asignarla a la regla.

    Las opciones varían de 0 a 100 en incrementos de 25.

  5. Si lo desea, agregue reglas adicionales.

Cuando termine, haga clic en Guardar.

Si está creando una nueva actividad de Recommendations o está editando una existente, la casilla Guardar criterios para más adelante está seleccionada de forma predeterminada. Si no desea usar los criterios en otras actividades, desmarque la casilla antes de guardar.

Vídeo de formación: Crear criterios en Recommendations (12:33) Distintivo del tutorial

Este vídeo contiene la información siguiente:

  • Crear criterios
  • Crear secuencias de criterios
  • Cargar criterios personalizados

En esta página