建立資料流程
最後一個步驟是在來源連線中所指定的資料集和目標連線中所指定的目的地檔案路徑之間建立資料流。
每種可用的雲端儲存型別都透過流量規格ID識別:
雲端儲存型別 | 流量規格ID |
---|---|
Amazon S3 | 269ba276-16fc-47db-92b0-c1049a3c131f |
Azure Blob 儲存體 | 95bd8965-fc8a-4119-b9c3-944c2c2df6d2 |
Azure資料湖 | 17be2013-2549-41ce-96e7-a70363bec293 |
資料登陸區域 | cd2fc47e-e838-4f38-a581-8fff2f99b63a |
Google Cloud Storage | 585c15c4-6cbf-4126-8f87-e26bff78b657 |
SFTP | 354d6aad-4754-46e4-a576-1b384561c440 |
下列程式碼會建立資料流程,其中排程設定為從遙遠的未來開始。 這可讓您在模型開發期間觸發隨機流程。 當您擁有受過訓練的模型後,您可以更新資料流的排程,以按照所需的排程共用功能資料集。
import time
on_schedule = False
if on_schedule:
schedule_params = {
"interval": 3,
"timeUnit": "hour",
"startTime": int(time.time())
}
else:
schedule_params = {
"interval": 1,
"timeUnit": "day",
"startTime": int(time.time() + 60*60*24*365) # Start the schedule far in the future
}
flow_spec_id = "cd2fc47e-e838-4f38-a581-8fff2f99b63a"
flow_obj = {
"name": "Flow for Feature Dataset to DLZ",
"flowSpec": {
"id": flow_spec_id,
"version": "1.0"
},
"sourceConnectionIds": [
source_connection_id
],
"targetConnectionIds": [
target_connection_id
],
"transformations": [],
"scheduleParams": schedule_params
}
flow_res = flow_conn.createFlow(
obj = flow_obj,
flow_spec_id = flow_spec_id
)
dataflow_id = flow_res["id"]
建立資料流程後,您現在可以觸發隨機流程執行,以隨選共用功能資料集:
from aepp import connector
connector = connector.AdobeRequest(
config_object=aepp.config.config_object,
header=aepp.config.header,
loggingEnabled=False,
logger=None,
)
endpoint = aepp.config.endpoints["global"] + "/data/core/activation/disflowprovider/adhocrun"
payload = {
"activationInfo": {
"destinations": [
{
"flowId": dataflow_id,
"datasets": [
{"id": created_dataset_id}
]
}
]
}
}
connector.header.update({"Accept":"application/vnd.adobe.adhoc.dataset.activation+json; version=1"})
activation_res = connector.postData(endpoint=endpoint, data=payload)
activation_res