创建数据流
最后一步是在源连接中指定的数据集和目标连接中指定的目标文件路径之间创建数据流。
每个可用的云存储类型都由一个流量规范ID标识:
云存储类型 | 流量规范ID |
---|---|
Amazon S3 | 269ba276-16fc-47db-92b0-c1049a3c131f |
Azure Blob Storage | 95bd8965-fc8a-4119-b9c3-944c2c2df6d2 |
Azure数据湖 | 17be2013-2549-41ce-96e7-a70363bec293 |
数据登陆区 | cd2fc47e-e838-4f38-a581-8fff2f99b63a |
Google 云存储 | 585c15c4-6cbf-4126-8f87-e26bff78b657 |
SFTP | 354d6aad-4754-46e4-a576-1b384561c440 |
以下代码创建一个数据流,其中计划设置为在未来的很长时间开始。 这允许您在模型开发期间触发临时流。 获得经过训练的模型后,您可以更新数据流的计划,以按所需的计划共享功能数据集。
import time
on_schedule = False
if on_schedule:
schedule_params = {
"interval": 3,
"timeUnit": "hour",
"startTime": int(time.time())
}
else:
schedule_params = {
"interval": 1,
"timeUnit": "day",
"startTime": int(time.time() + 60*60*24*365) # Start the schedule far in the future
}
flow_spec_id = "cd2fc47e-e838-4f38-a581-8fff2f99b63a"
flow_obj = {
"name": "Flow for Feature Dataset to DLZ",
"flowSpec": {
"id": flow_spec_id,
"version": "1.0"
},
"sourceConnectionIds": [
source_connection_id
],
"targetConnectionIds": [
target_connection_id
],
"transformations": [],
"scheduleParams": schedule_params
}
flow_res = flow_conn.createFlow(
obj = flow_obj,
flow_spec_id = flow_spec_id
)
dataflow_id = flow_res["id"]
创建数据流后,您现在可以触发临时流运行以按需共享功能数据集:
from aepp import connector
connector = connector.AdobeRequest(
config_object=aepp.config.config_object,
header=aepp.config.header,
loggingEnabled=False,
logger=None,
)
endpoint = aepp.config.endpoints["global"] + "/data/core/activation/disflowprovider/adhocrun"
payload = {
"activationInfo": {
"destinations": [
{
"flowId": dataflow_id,
"datasets": [
{"id": created_dataset_id}
]
}
]
}
}
connector.header.update({"Accept":"application/vnd.adobe.adhoc.dataset.activation+json; version=1"})
activation_res = connector.postData(endpoint=endpoint, data=payload)
activation_res