探索性数据分析

本文档提供了使用Data Distiller浏览和分析Python笔记本中的数据的一些基本示例和最佳实践。

开始使用

在继续本指南之前,请确保已在Python笔记本中创建了到Data Distiller的连接。 有关如何将 Python 笔记本连接到Data Distiller的说明,请参阅文档。

获取基本统计信息 basic-statistics

使用以下代码检索数据集中的行数和不同的用户档案。

table_name = 'ecommerce_events'

basic_statistics_query = f"""
SELECT
    COUNT(_id) as "totalRows",
    COUNT(DISTINCT _id) as "distinctUsers"
FROM {table_name}"""

df = qs_cursor.query(basic_statistics_query, output="dataframe")
df

示例输出

totalRows
非重复用户
0
1276563
1276563

创建大型数据集的采样版本 create-dataset-sample

如果要查询的数据集非常大,或者不需要通过探索性查询获得准确的结果,请使用可用于Data Distiller查询的取样功能。 此过程分为两步:

  • 首先,分析 ​数据集以创建具有指定采样率的采样版本
  • 接下来,查询数据集的采样版本。 根据应用于采样数据集的函数,您可能希望将输出扩展到整个数据集的数字

创建5%的示例 create-sample

以下示例分析数据集并创建一个5%示例:

# A sampling rate of 10 is 100% in Query Service, so for 5% use a sampling rate 0.5
sampling_rate = 0.5

analyze_table_query=f"""
SET aqp=true;
ANALYZE TABLE {table_name} TABLESAMPLE SAMPLERATE {sampling_rate}"""

qs_cursor.query(analyze_table_query, output="raw")

查看示例 view-sample

您可以使用sample_meta函数查看从给定数据集创建的任何示例。 下面的代码段演示了如何使用sample_meta函数。

sampled_version_of_table_query = f'''SELECT sample_meta('{table_name}')'''

df_samples = qs_cursor.query(sampled_version_of_table_query, output="dataframe")
df_samples

示例输出

sample_table_name
sample_dataset_id
parent_dataset_id
sample_type
sampling_rate
filter_condition_on_source_dataset
sample_num_rows
已创建
0
cmle_synthetic_data_experience_event_dataset_c…
650f7a09ed6c3e28d34d7fc2
64fb4d7a7d748828d304a2f4
一致
0.5
6427
23/09/2023
11:51:37

查询您的示例 query-sample-data

您可以通过引用返回元数据中的示例表名称来直接查询示例。 然后,可以将结果乘以采样率以获得估计值。

sample_table_name = df_samples[df_samples["sampling_rate"] == sampling_rate]["sample_table_name"].iloc[0]

count_query=f'''SELECT count(*) as cnt from {sample_table_name}'''

df = qs_cursor.query(count_query, output="dataframe")
# Divide by the sampling rate to extrapolate to the full dataset
approx_count = df["cnt"].iloc[0] / (sampling_rate / 100)

print(f"Approximate count: {approx_count} using {sampling_rate *10}% sample")

示例输出

Approximate count: 1284600.0 using 5.0% sample

电子邮件漏斗分析 email-funnel-analysis

漏斗分析是一种了解实现目标结果所需的步骤以及完成每个步骤的用户数量的方法。 以下示例对导致用户订阅新闻稿的步骤进行了简单的漏斗分析。 订阅结果由web.formFilledOut的事件类型表示。

首先,运行查询以获取每一步的用户数。

simple_funnel_analysis_query = f'''SELECT eventType, COUNT(DISTINCT _id) as "distinctUsers",COUNT(_id) as "distinctEvents" FROM {table_name} GROUP BY eventType ORDER BY distinctUsers DESC'''

funnel_df = qs_cursor.query(simple_funnel_analysis_query, output="dataframe")
funnel_df

示例输出

事件类型
非重复用户
distinctEvents
0
directMarketing.emailSent
598840
598840
1
directMarketing.emailOpened
239028
239028
2
web.webpagedetails.pageViews
120118
120118
3
advertising.impressions
119669
119669
4
directMarketing.emailClicked
51581
51581
5
commerce.productViews
37915
37915
6
decisioning.propositionDisplay
37650
37650
7
web.webinteraction.linkClicks
37581
37581
8
web.formFilledOut
17860
17860
9
advertising.clicks
7610
7610
10
decisioning.propositionInteract
2964
2964
11
decisioning.propositionDismiss
2889
2889
12
commerce.purchases
2858
2858

绘制查询结果 plot-results

接下来,使用Python plotly库绘制查询结果:

import plotly.express as px

email_funnel_events = ["directMarketing.emailSent", "directMarketing.emailOpened", "directMarketing.emailClicked", "web.formFilledOut"]
email_funnel_df = funnel_df[funnel_df["eventType"].isin(email_funnel_events)]

fig = px.funnel(email_funnel_df, y='eventType', x='distinctUsers')
fig.show()

示例输出

eventType电子邮件漏斗的信息图。

事件关联 event-correlations

另一种常见分析是计算事件类型与目标转化事件类型之间的关联。 在此示例中,订阅事件由web.formFilledOut表示。 此示例使用Data Distiller查询中可用的Spark函数来实现以下步骤:

  1. 按配置文件计算每种事件类型的事件数。
  2. 跨配置文件聚合每个事件类型的计数,并使用web,formFilledOut计算每个事件类型的关联。
  3. 将计数和关联的数据流转换为每个特征的皮尔森相关系数(事件类型计数)与目标事件的表。
  4. 以图表的形式显示结果。

Spark函数聚合数据以返回一个小型结果表,这样您就可以在整个数据集中执行此类型的查询。

large_correlation_query=f'''
SELECT SUM(webFormsFilled) as webFormsFilled_totalUsers,
       SUM(advertisingClicks) as advertisingClicks_totalUsers,
       SUM(productViews) as productViews_totalUsers,
       SUM(productPurchases) as productPurchases_totalUsers,
       SUM(propositionDismisses) as propositionDismisses_totaUsers,
       SUM(propositionDisplays) as propositionDisplays_totaUsers,
       SUM(propositionInteracts) as propositionInteracts_totalUsers,
       SUM(emailClicks) as emailClicks_totalUsers,
       SUM(emailOpens) as emailOpens_totalUsers,
       SUM(webLinkClicks) as webLinksClicks_totalUsers,
       SUM(webPageViews) as webPageViews_totalusers,
       corr(webFormsFilled, emailOpens) as webForms_EmailOpens,
       corr(webFormsFilled, advertisingClicks) as webForms_advertisingClicks,
       corr(webFormsFilled, productViews) as webForms_productViews,
       corr(webFormsFilled, productPurchases) as webForms_productPurchases,
       corr(webFormsFilled, propositionDismisses) as webForms_propositionDismisses,
       corr(webFormsFilled, propositionInteracts) as webForms_propositionInteracts,
       corr(webFormsFilled, emailClicks) as webForms_emailClicks,
       corr(webFormsFilled, emailOpens) as webForms_emailOpens,
       corr(webFormsFilled, emailSends) as webForms_emailSends,
       corr(webFormsFilled, webLinkClicks) as webForms_webLinkClicks,
       corr(webFormsFilled, webPageViews) as webForms_webPageViews
FROM(
    SELECT _{tenant_id}.cmle_id as userID,
            SUM(CASE WHEN eventType='web.formFilledOut' THEN 1 ELSE 0 END) as webFormsFilled,
            SUM(CASE WHEN eventType='advertising.clicks' THEN 1 ELSE 0 END) as advertisingClicks,
            SUM(CASE WHEN eventType='commerce.productViews' THEN 1 ELSE 0 END) as productViews,
            SUM(CASE WHEN eventType='commerce.productPurchases' THEN 1 ELSE 0 END) as productPurchases,
            SUM(CASE WHEN eventType='decisioning.propositionDismiss' THEN 1 ELSE 0 END) as propositionDismisses,
            SUM(CASE WHEN eventType='decisioning.propositionDisplay' THEN 1 ELSE 0 END) as propositionDisplays,
            SUM(CASE WHEN eventType='decisioning.propositionInteract' THEN 1 ELSE 0 END) as propositionInteracts,
            SUM(CASE WHEN eventType='directMarketing.emailClicked' THEN 1 ELSE 0 END) as emailClicks,
            SUM(CASE WHEN eventType='directMarketing.emailOpened' THEN 1 ELSE 0 END) as emailOpens,
            SUM(CASE WHEN eventType='directMarketing.emailSent' THEN 1 ELSE 0 END) as emailSends,
            SUM(CASE WHEN eventType='web.webinteraction.linkClicks' THEN 1 ELSE 0 END) as webLinkClicks,
            SUM(CASE WHEN eventType='web.webinteraction.pageViews' THEN 1 ELSE 0 END) as webPageViews
    FROM {table_name}
    GROUP BY userId
)
'''
large_correlation_df = qs_cursor.query(large_correlation_query, output="dataframe")
large_correlation_df

示例输出

webFormsFilled_totalUsers
advertisingClicks_totalUsers
productViews_totalUsers
productPurchases_totalUsers
propositionDismisses_totaUsers
propositionDisplays_totaUsers
propositionInteracts_totalUsers
emailClicks_totalUsers
emailOpens_totalUsers
webLinksClicks_totalUsers
webForms_advertisingClicks
webForms_productViews
webForms_productPurchases
webForms_propositionDismisses
webForms_propositionInteracts
webForms_emailClicks
webForms_emailOpens
webForms_emailSends
webForms_webLinkClicks
webForms_webPageViews
0
17860
7610
37915
0
2889
37650
2964
51581
239028
37581
0.026805
0.2779
None
0.06014
0.143656
0.305657
0.218874
0.192836
0.259353
None

将行转换为事件类型关联 event-type-correlation

接下来,将上面查询输出中的单行数据转换为一个表,该表显示每种事件类型与目标订阅事件的关联:

cols = large_correlation_df.columns
corrdf = large_correlation_df[[col for col in cols if ("webForms_"  in col)]].melt()
corrdf["feature"] = corrdf["variable"].apply(lambda x: x.replace("webForms_", ""))
corrdf["pearsonCorrelation"] = corrdf["value"]

corrdf.fillna(0)

示例输出

变量
特征
皮尔逊关联
0
webForms_EmailOpens
0.218874
EmailOpens
0.218874
1
webForms_advertisingClicks
0.026805
广告点击量
0.026805
2
webForms_productViews
0.277900
产品视图
0.277900
3
webForms_productPurchases
0.000000
产品购买
0.000000
4
webForms_propositionDismisses
0.060140
propositionDismises
0.060140
5
webForms_propositionInteracts
0.143656
propositionInteracts
0.143656
6
webForms_emailClicks
0.305657
电子邮件点击次数
0.305657
7
webForms_emailOpens
0.218874
emailOpens
0.218874
8
webForms_emailSends
0.192836
emailSends
0.192836
9
webForms_webLinkClicks
0.259353
webLinkClicks
0.259353
10
webForms_webPageViews
0.000000
webPageViews
0.000000

最后,您可以可视化与matplotlib Python库的关联:

import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(5,10))
sns.barplot(data=corrdf.fillna(0), y="feature", x="pearsonCorrelation")
ax.set_title("Pearson Correlation of Events with the outcome event")

事件结果的皮尔逊关联条形图

后续步骤

通过阅读本文档,您已了解如何使用Data Distiller浏览和分析Python笔记本中的数据。 在机器学习环境中创建从Experience Platform到馈送自定义模型的功能管道的下一步是为机器学习设计功能

recommendation-more-help
ccf2b369-4031-483f-af63-a93b5ae5e3fb