排序

在此使用案例中,您要报告2023年1月期间产品名称的购买收入和购买(按降序购买收入排序)。

Customer Journey Analytics

用例的示例​ 排序 ​面板:

Customer Journey Analytics排序面板

BI 工具
note prerequisites
PREREQUISITES
请确保已验证连接是否成功,可以列出数据视图,并为要为其尝试此用例的BI工具使用数据视图
tabs
Power BI桌面
  1. 在​ 数据 ​窗格中:

    1. 选择​日期范围
    2. 选择​product_namr
    3. 选择​sum purchase_revenue
    4. 选择​购买总和
  2. 在​ 筛选器 ​窗格中:

    1. 从该视觉对象上的​ 筛选器中选择 ​日期范围是(全部)
    2. 选择​ 高级筛选 ​作为​筛选器类型
    3. 将筛选器定义为​当值 1/1/2023 2/1/2023之前或之后时显示项。
  3. 在“可视化”窗格中:

    1. 选择 CrossSize75 以从列中删除日期范围。
    2. 将​ Sum of purchase_revenue ​拖到​ ​项的底部。
  4. 在报表中,选择​ Sum of purchase_revenue ​以按采购收入的降序对表进行排序。

    您的Power BI桌面应该如下所示。

    Power BI桌面使用日期范围名称进行筛选

Power BI Desktop使用BI扩展执行的查询不包含sort语句。 缺少sort语句意味着排序在客户端执行。

code language-sql
select "_"."product_name",
    "_"."a0",
    "_"."a1"
from
(
    select "rows"."product_name" as "product_name",
        sum("rows"."purchases") as "a0",
        sum("rows"."purchase_revenue") as "a1"
    from
    (
        select "_"."daterangeName",
            "_"."daterange",
            "_"."filterId",
            "_"."filterName",
            "_"."timestamp",
            "_"."affiliate_name",
            "_"."affiliate_url",
            "_"."commerce.order.priceTotal",
            "_"."customer_city",
            "_"."customer_region",
            "_"."daterangeday",
            "_"."daterangefifteenminute",
            "_"."daterangefiveminute",
            "_"."daterangehour",
            "_"."daterangeminute",
            "_"."daterangemonth",
            "_"."daterangequarter",
            "_"."daterangesecond",
            "_"."daterangethirtyminute",
            "_"."daterangeweek",
            "_"."daterangeyear",
            "_"."hitdatetime",
            "_"."page_name",
            "_"."page_url",
            "_"."product_category",
            "_"."product_name",
            "_"."product_short_review",
            "_"."product_subCategory",
            "_"."referrer_url",
            "_"."search_engine",
            "_"."search_keywords",
            "_"."store_city",
            "_"."store_name",
            "_"."store_region",
            "_"."store_type",
            "_"."timepartdayofmonth",
            "_"."timepartdayofweek",
            "_"."timepartdayofyear",
            "_"."timeparthourofday",
            "_"."timepartminuteofhour",
            "_"."timepartmonthofyear",
            "_"."timepartquarterofyear",
            "_"."timepartweekofyear",
            "_"."cm_session_end_rate_defaultmetric",
            "_"."cm_session_person_defaultmetric",
            "_"."cm_session_start_rate_defaultmetric",
            "_"."cm_timespent_person_defaultmetric",
            "_"."cm_timespent_session_defaultmetric",
            "_"."cm_product_name_count_distinct",
            "_"."ad_views",
            "_"."adobe_sessionends",
            "_"."adobe_sessionstarts",
            "_"."adobe_timespent",
            "_"."exchange_buybacks",
            "_"."exchange_cost",
            "_"."exchange_purchases",
            "_"."exchange_revenue",
            "_"."occurrences",
            "_"."page_views",
            "_"."product_quantity",
            "_"."product_reviews",
            "_"."product_views",
            "_"."purchase_revenue",
            "_"."purchases",
            "_"."visitors",
            "_"."visits"
        from "public"."cc_data_view" "_"
        where "_"."daterange" < date '2023-02-01' and "_"."daterange" >= date '2023-01-01'
    ) "rows"
    group by "product_name"
) "_"
where not "_"."a0" is null or not "_"."a1" is null
limit 1000001
Tableau桌面
  1. 选择底部的​ 表1 ​选项卡以从​ 数据源 ​切换。 在​ 表1 ​视图中:

    1. 从​ 筛选器 ​托架中的​ ​列表中拖动​ 日期范围 ​条目。

    2. 在​ 筛选器字段[日期范围] ​对话框中,选择​日期范围,然后选择​下一步>

    3. 在​ 筛选器[日期范围] ​对话框中,选择​日期范围,然后选择01/01/2023 - 1/2/2023。 选择​ 应用 ​和​确定

    4. 从​ ​列表中拖动​产品名称,并将该条目放入​ ​旁边的字段中。

    5. 从​ Tables ​列表中拖动​ Purchases ​条目,并将该条目放入​ ​旁边的字段中。 值更改为​SUM(购买)

    6. 将​ Purchase Revenue ​条目从​ ​列表中拖放到​ ​旁的字段中,SUM(购买)​旁边。 值更改为​SUM(采购收入)

    7. 从​ 显示我 ​中选择​文本表

    8. 从​ 适合 ​下拉菜单中选择​适合宽度

    9. 选择​ Purchase Revenue ​列标题并对此列上的表按降序排序。

      您的Tableau桌面应该如下所示。

      Tableau桌面排序

Tableau Desktop使用BI扩展执行的查询不包含sort语句。 缺少此sort语句意味着排序在客户端执行。

code language-sql
SELECT CAST("cc_data_view"."product_name" AS TEXT) AS "product_name",
  SUM("cc_data_view"."occurrences") AS "sum:occurrences:ok",
  SUM("cc_data_view"."purchase_revenue") AS "sum:purchase_revenue:ok",
  SUM("cc_data_view"."purchases") AS "sum:purchases:ok"
FROM "public"."cc_data_view" "cc_data_view"
WHERE (("cc_data_view"."daterange" >= (DATE '2023-01-01')) AND ("cc_data_view"."daterange" <= (DATE '2023-02-01')))
GROUP BY 1
Looker
  1. 在Looker的​ 浏览 ​界面中,刷新您的连接。 选择 设置 清除缓存并刷新

  2. 在Looker的​ 浏览 ​界面中,确保您拥有干净的设置。 如果不是,请选择 设置 删除字段和筛选器

  3. 选择​ 筛选器 ​下的​+筛选器

  4. 在​ 添加筛选器 ​对话框中:

    1. 选择​‣抄送数据视图
    2. 从字段列表中,选择​日‣间范围日期,然后选择​日期范围日期
      Looker筛选器
  5. 指定​ Cc数据视图日期范围日期 ​筛选器,因为​ 2023/01/01 之前 2023/02/01​的范围内。

  6. 从左边栏中的​ ‣ Cc数据视图 ​部分,选择​产品名称

  7. 在左边栏的​ ‣自定义字段 ​部分中:

    1. 从​ +添加 ​下拉菜单中选择​自定义度量值

    2. 在​ 创建自定义度量值 ​对话框中:

      1. 从​ 要度量 ​的字段下拉菜单中选择​购买收入
      2. 从​ 度量值类型 ​下拉菜单中选择​Sum
      3. 输入​ 名称 ​的自定义字段名称。 例如:Sum of Purchase Revenue
      4. 选择​ 字段详细信息 ​选项卡。
      5. 从​ 格式 ​下拉菜单中选择​小数,并确保以0小数​输入
        Looker自定义量度字段
      6. 选择​保存
  8. 请确保在​ Purchase Revenue ​列上选择​降序,排序顺序: 1)。

  9. 选择​运行

  10. 选择​‣可视化图表

您应该会看到如下所示的可视化图表和表格。

非重复查找器计数

Looker使用BI扩展生成的查询包括ORDER BY,这意味着排序通过Looker和BI扩展执行。

code language-sql
-- Looker Query Context '{"user_id":6,"history_slug":"fc83573987b999306eaf6e1a3f2cde70","instance_slug":"71d4667f0b76c0011463658f45c3f7a3"}'
SELECT
    cc_data_view."product_name"  AS "cc_data_view.product_name",
    COALESCE(SUM(CAST(( cc_data_view."purchase_revenue"  ) AS DOUBLE PRECISION)), 0) AS "purchase_revenue"
FROM
    "public"."cc_data_view" AS "cc_data_view"
WHERE ((( cc_data_view."daterange"  ) >= (DATE_TRUNC('day', DATE '2024-01-31')) AND ( cc_data_view."daterange"  ) < (DATE_TRUNC('day', DATE '2023-02-01'))))
GROUP BY
    1
ORDER BY
    2 DESC
FETCH NEXT 500 ROWS ONLY
Jupyter笔记本
  1. 在新单元格中输入以下语句。

    code language-python
    data = %sql SELECT product_name AS `Product Name`, SUM(purchase_revenue) AS `Purchase Revenue`, SUM(purchases) AS `Purchases` \
                FROM cc_data_view \
                WHERE daterange BETWEEN '2023-01-01' AND '2023-02-01' \
                GROUP BY 1 \
                ORDER BY `Purchase Revenue` DESC \
                LIMIT 5;
    display(data)
    
  2. 执行单元格。 您应该会看到类似于以下屏幕快照的输出。

    Jupyter笔记本结果

查询由Jupyter Notebook中定义的BI扩展执行。

RStudio
  1. 在新块中输入以下介于```{r}和` ````之间的语句。

    code language-r
    ## Dimension 1 Sorted
    df <- dv %>%
       filter(daterange >= "2023-01-01" & daterange < "2023-02-01") %>%
       group_by(product_name) %>%
       summarise(purchase_revenue = sum(purchase_revenue), purchases = sum(purchases), .groups = "keep") %>%
       arrange(desc(purchase_revenue), .by_group = FALSE)
    print(df)
    
  2. 运行块。 您应该会看到类似于以下屏幕快照的输出。

    RStudio结果

RStudio使用BI扩展生成的查询包括ORDER BY,这意味着顺序通过RStudio和BI扩展应用。

code language-sql
SELECT
  "product_name",
  SUM("purchase_revenue") AS "purchase_revenue",
  SUM("purchases") AS "purchases"
FROM (
  SELECT "cc_data_view".*
  FROM "cc_data_view"
  WHERE ("daterange" >= '2023-01-01' AND "daterange" < '2023-02-01')
) AS "q01"
GROUP BY "product_name"
ORDER BY "purchase_revenue" DESC
LIMIT 1000
recommendation-more-help
080e5213-7aa2-40d6-9dba-18945e892f79