MLServices 끝점
MLService는 이전에 개발된 모델에 액세스하고 재사용할 수 있는 기능을 조직에 제공하는 게시된 교육된 모델입니다. MLSservices의 주요 기능은 일정에 따라 교육 및 채점을 자동화하는 기능입니다. 예약된 교육 실행은 모델의 효율성과 정확성을 유지하는 데 도움이 될 수 있으며, 예약된 채점 실행은 새로운 통찰력이 일관되게 생성되도록 할 수 있습니다.
자동화된 교육 및 채점 일정은 시작 타임스탬프, 종료 타임스탬프 및 cron 표현식🔗으로 표시되는 빈도 로 정의됩니다🔗. 일정은 MLService를 만들 때 정의하거나 기존 MLService를 업데이트하여 적용할 수 있습니다.
MLService 만들기 create-an-mlservice
POST 요청 및 서비스 이름과 유효한 MLInstance ID를 제공하는 페이로드를 수행하여 MLService를 만들 수 있습니다. MLService를 만드는 데 사용되는 MLInstance는 기존 교육 실험이 필요하지 않지만 해당 실험 ID 및 교육 실행 ID를 제공하여 기존 학습된 모델을 사용하여 MLService를 만들도록 선택할 수 있습니다.
API 형식
POST /mlServices
요청
curl -X POST \
https://platform.adobe.io/data/sensei/mlServices \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json; profile=mlService.v1.json' \
-d '{
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingExperimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
"trainingSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"scoringSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
}
}'
name
description
mlInstanceId
trainingDataSetId
trainingExperimentId
trainingExperimentRunId
trainingSchedule
trainingSchedule.startTime
trainingSchedule.endTime
trainingSchedule.cron
scoringSchedule
scoringSchedule.startTime
scoringSchedule.endTime
scoringSchedule.cron
응답
성공적인 응답은 고유 식별자(),id
교육에 대한 실험 ID(trainingExperimentId
), 점수에 대한 실험 ID(scoringExperimentId
) 및 입력 교육 데이터 세트 ID(trainingDataSetId
)를 포함하여 새로 생성된 MLService의 세부 정보가 포함된 페이로드를 반환합니다.
{
"id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"trainingSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"scoringSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"updated": "2019-01-01T00:00:00.000Z"
}
MLService 목록 검색 retrieve-a-list-of-mlservices
단일 GET 요청을 수행하여 MLService 목록을 검색할 수 있습니다. 결과를 필터링하기 위해 요청 경로에 쿼리 매개 변수를 지정할 수 있습니다. 사용 가능한 쿼리 목록은 자산 검색을 위한 쿼리 매개 변수의 부록 섹션을 참조하십시오.
API 형식
GET /mlServices
GET /mlServices?{QUERY_PARAMETER}={VALUE}
GET /mlServices?{QUERY_PARAMETER_1}={VALUE_1}&{QUERY_PARAMETER_2}={VALUE_2}
요청
다음 요청에는 쿼리가 포함되어 있으며 동일한 MLInstance ID({MLINSTANCE_ID}
)를 공유하는 MLService 목록을 검색합니다.
curl -X GET \
'https://platform.adobe.io/data/sensei/mlServices?property=mlInstanceId==46986c8f-7739-4376-8509-0178bdf32cda' \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
응답
성공적인 응답은 MLService ID({MLSERVICE_ID}
), 교육용 실험 ID({TRAINING_ID}
), 채점용 실험 ID({SCORING_ID}
) 및 입력 교육 데이터 세트 ID({DATASET_ID}
)를 포함하여 MLService 목록과 세부 정보를 반환합니다.
{
"children": [
{
"id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
"name": "A service created in UI",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
],
"_page": {
"property": "mlInstanceId==46986c8f-7739-4376-8509-0178bdf32cda,deleted==false",
"count": 1
}
}
특정 MLService 검색 retrieve-a-specific-mlservice
요청 경로에 원하는 MLService의 ID를 포함하는 GET 요청을 수행하여 특정 실험의 세부 정보를 검색할 수 있습니다.
API 형식
GET /mlServices/{MLSERVICE_ID}
{MLSERVICE_ID}
: 유효한 MLService ID입니다.
요청
curl -X GET \
https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
응답
성공적인 응답은 요청된 MLService의 세부 정보가 포함된 페이로드를 반환합니다.
{
"id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
MLService 업데이트 update-an-mlservice
요청 경로에 대상 MLService의 ID를 포함하는 PUT 요청을 통해 속성을 덮어쓰고 업데이트된 속성이 포함된 JSON 페이로드를 제공하여 기존 MLService를 업데이트할 수 있습니다.
API 형식
PUT /mlServices/{MLSERVICE_ID}
{MLSERVICE_ID}
: 올바른 MLService ID입니다.
요청
curl -X PUT \
https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json; profile=mlService.v1.json' \
-d '{
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"trainingSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"scoringSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
}
}'
응답
성공적인 응답은 MLService의 업데이트된 세부 사항이 포함된 페이로드를 반환합니다.
{
"id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"trainingSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"scoringSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"updated": "2019-01-02T00:00:00.000Z"
}
MLService 삭제
요청 경로에 대상 MLService의 ID를 포함하는 DELETE 요청을 수행하여 단일 MLService를 삭제할 수 있습니다.
API 형식
DELETE /mlServices/{MLSERVICE_ID}
{MLSERVICE_ID}
요청
curl -X DELETE \
https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
응답
{
"title": "Success",
"status": 200,
"detail": "MLService deletion was successful"
}
MLInstance ID로 MLServices 삭제
MLInstance ID를 쿼리 매개 변수로 지정하는 DELETE 요청을 수행하여 특정 MLInstance에 속하는 모든 MLService를 삭제할 수 있습니다.
API 형식
DELETE /mlServices?mlInstanceId={MLINSTANCE_ID}
{MLINSTANCE_ID}
요청
curl -X DELETE \
https://platform.adobe.io/data/sensei/mlServices?mlInstanceId=46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
응답
{
"title": "Success",
"status": 200,
"detail": "MLServices deletion was successful"
}