대상자 오버랩
이 통찰력에 의해 답변된 질문:
- 두 대상에 공통되는 프로필은 무엇입니까?
- 중복은 참여 또는 전환율에 어떤 영향을 줍니까?
- 겹치는 세그먼트에 맞게 마케팅 전략을 어떻게 조정할 수 있습니까?
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT Sum(overlap_col1) overlap_col1,
Sum(overlap_col2) overlap_col2,
Sum(overlap_count) Overlap_count
FROM
(SELECT 0 overlap_col1,
0 overlap_col2,
sum(count_of_overlap)Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 1133248113
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
AND ((qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=1870062812
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=2080256533)
OR (qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=2080256533
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=1870062812))
UNION ALL SELECT sum(count_of_profiles) overlap_col1,
0 overlap_col2,
0 overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
LEFT JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1133248113
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 1870062812
UNION ALL SELECT 0 overlap_col1,
sum(count_of_profiles) overlap_col2,
0 Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1133248113
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 2080256533 ) a;
이 인사이트의 모양 및 기능에 대한 자세한 내용은 대상 중복 위젯 설명서를 참조하십시오.
대상자 크기 변경 트렌드
이 통찰력에 의해 답변된 질문:
- 지난 30일, 90일 또는 12개월 내에 대상자 크기가 상당히 증가하거나 감소했습니까?
- 특정 기간 동안 대상 크기는 어떻게 변경됩니까?
- 지난 12개월 동안 탐지된 급감이나 급감의 이상현상이나 반복되는 패턴이 있었습니까?
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT date_key,
Profiles_added
FROM
(SELECT rn_num,
date_key,
(count_of_profiles-lag(count_of_profiles, 1, 0) over(
ORDER BY date_key))Profiles_added
FROM
(SELECT date_key,
sum(x.count_of_profiles)count_of_profiles,
row_number() OVER (
ORDER BY date_key) rn_num
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines x
INNER JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
WHERE segment_id = 1333234510
AND x.date_key >= dateadd(DAY, -30 -1, y.last_process_date)
GROUP BY x.date_key) a)b
WHERE rn_num > 1;
- 내 대상이 지속적으로 성장하고, 안정되고, 변동을 경험하고 있습니까?
- 시간이 지남에 따라 대상자 증가율이 급증하거나 감소하는 특정 정체성이 있습니까?
- 시간이 지남에 따라 나의 정체성 성장에는 어떤 이상이 있는가?
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT sum(count_of_profiles) AS identities,
date_key
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines x
INNER JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
INNER JOIN qsaccel.profile_agg.adwh_dim_namespaces z ON x.namespace_id = z.namespace_id
AND x.merge_policy_id = z.merge_policy_id
WHERE x.date_key >= dateadd(DAY, -30, y.last_process_date)
AND x.segment_id = 1333234510
AND z.namespace_description = 'crmid'
GROUP BY date_key;
이 인사이트의 모양 및 기능에 대한 자세한 내용은 ID 위젯 설명서별 대상 크기 트렌드를 참조하십시오.
대상자 크기 트렌드
이 통찰력에 의해 답변된 질문:
- 예외 항목을 포함하여 시간이 지남에 따라 대상 크기가 어떻게 변경됩니까?
- 30일, 90일 및 12개월 동안 대상 크기의 전반적인 트렌드를 어떻게 찾을 수 있습니까?
- 규모에 기여하는 대상의 주요 특성은 무엇입니까? 예를 들어 이메일 마케팅 캠페인으로 인한 스파이크가 있습니다.
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT date_key,
sum(count_of_profiles) AS audience_size
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines x
INNER JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
WHERE date_key >= dateadd(DAY, -30, y.last_process_date)
AND x.segment_id = 1333234510
GROUP BY date_key,
segment_id;
- 현재 대상자 총 규모는 얼마입니까?
- 현재 대상 크기는 이전 기간 또는 특정 대상과 어떻게 비교됩니까?
- 최근 마케팅 캠페인이 대상자 크기에 미치는 영향은 무엇입니까?
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT
sum(
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.count_of_profiles
) count_of_profiles
FROM
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id = qsaccel.profile_agg.adwh_dim_segments.segment_id
WHERE
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id = -1323307941
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 1914917902
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-12';
이 인사이트의 모양 및 기능에 대한 자세한 내용은 대상 크기 위젯 설명서를 참조하세요.
고객 AI 점수 분포
이 통찰력에 의해 답변된 질문:
- 선택한 대상자로 필터링된 내 고객 AI 모델의 각 버킷에 대한 채점 분포는 무엇입니까?
- 특정 대상에 대한 높음, 중간, 낮음의 점수 분포는 얼마입니까?
- 관심 있는 다양한 대상자에 의한 채점 분포의 분류는 무엇인가?
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT b.model_name,
b.model_type,
c.segment_name,
c.segment_id,
CASE
WHEN score >= 0
AND score < 25 THEN 'LOW'
WHEN score >= 25
AND score < 75 THEN 'MEDIUM'
WHEN score >= 75
AND score <= 100 THEN 'HIGH'
END bucket_name,
CASE
WHEN score >= 0
AND score < 5 THEN '02.50'
WHEN score >= 5
AND score < 10 THEN '07.50'
WHEN score >= 10
AND score < 15 THEN '12.50'
WHEN score >= 15
AND score < 20 THEN '17.50'
WHEN score >= 20
AND score < 25 THEN '22.50'
WHEN score >= 25
AND score < 30 THEN '27.50'
WHEN score >= 30
AND score < 35 THEN '32.50'
WHEN score >= 35
AND score < 40 THEN '37.50'
WHEN score >= 40
AND score < 45 THEN '42.50'
WHEN score >= 45
AND score < 50 THEN '47.50'
WHEN score >= 50
AND score < 55 THEN '52.50'
WHEN score >= 55
AND score < 60 THEN '57.50'
WHEN score >= 60
AND score < 65 THEN '62.50'
WHEN score >= 65
AND score < 70 THEN '67.50'
WHEN score >= 70
AND score < 75 THEN '72.50'
WHEN score >= 75
AND score < 80 THEN '77.50'
WHEN score >= 80
AND score < 85 THEN '82.50'
WHEN score >= 85
AND score < 90 THEN '87.50'
WHEN score >= 90
AND score < 95 THEN '92.50'
WHEN score >= 95
AND score <= 100 THEN '97.50'
END score_bins,
Sum(CASE
WHEN score >= 0
AND score < 25 THEN count_of_profiles
WHEN score >= 25
AND score < 75 THEN count_of_profiles
WHEN score >= 75
AND score <= 100 THEN count_of_profiles
END) count_of_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_ai_models a
JOIN qsaccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id = b.merge_policy_id
AND a.model_id = b.model_id
JOIN qsaccel.profile_agg.adwh_dim_segments c ON a.segment_id = c.segment_id
WHERE a.merge_policy_id = 1133248113
AND a.model_id = 1829081696
AND a.segment_id = 1870062812
AND score_date =
(SELECT MAX(score_date)
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_ai_models d
WHERE d.model_id = a.model_id) GROUP BY b.model_name,
b.model_type,
c.segment_name,
c.segment_id,
CASE
WHEN score >= 0
AND score < 25 THEN 'LOW'
WHEN score >= 25
AND score < 75 THEN 'MEDIUM'
WHEN score >= 75
AND score <= 100 THEN 'HIGH'
END,
CASE
WHEN score >= 0
AND score < 5 THEN '02.50'
WHEN score >= 5
AND score < 10 THEN '07.50'
WHEN score >= 10
AND score < 15 THEN '12.50'
WHEN score >= 15
AND score < 20 THEN '17.50'
WHEN score >= 20
AND score < 25 THEN '22.50'
WHEN score >= 25
AND score < 30 THEN '27.50'
WHEN score >= 30
AND score < 35 THEN '32.50'
WHEN score >= 35
AND score < 40 THEN '37.50'
WHEN score >= 40
AND score < 45 THEN '42.50'
WHEN score >= 45
AND score < 50 THEN '47.50'
WHEN score >= 50
AND score < 55 THEN '52.50'
WHEN score >= 55
AND score < 60 THEN '57.50'
WHEN score >= 60
AND score < 65 THEN '62.50'
WHEN score >= 65
AND score < 70 THEN '67.50'
WHEN score >= 70
AND score < 75 THEN '72.50'
WHEN score >= 75
AND score < 80 THEN '77.50'
WHEN score >= 80
AND score < 85 THEN '82.50'
WHEN score >= 85
AND score < 90 THEN '87.50'
WHEN score >= 90
AND score < 95 THEN '92.50'
WHEN score >= 95
AND score <= 100 THEN '97.50'
END;
이 인사이트의 모양과 기능에 대한 자세한 내용은 점수 위젯 설명서의 고객 AI 배포를 참조하십시오.
고객 AI 점수 요약
이 통찰력에 의해 답변된 질문:
- 특정 대상에 대한 각 고객 AI 모델의 채점 요약은 무엇입니까?
- 다양한 대상에 대해 내 고객 AI 성향 점수는 어떻게 변경됩니까?
- 내 채점 요약은 대상 개요의 다른 KPI와 어떻게 비교합니까?
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT model_name,
model_type,
segment_name,
CASE
WHEN score BETWEEN 0 AND 24 THEN 'LOW'
WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
END score_buckets,
sum(count_of_profiles) count_of_profiles
FROM QSAccel.profile_agg.adwh_fact_profile_by_segment_ai_models a
JOIN QSAccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id=b.merge_policy_id
AND a.model_id=b.model_id
JOIN QSAccel.profile_agg.adwh_dim_segments c ON a.segment_id=c.segment_id
WHERE a.merge_policy_id=1133248113
AND a.model_id =1829081696
AND a.segment_id=1870062812
AND score_date=
(SELECT max(score_date)
FROM QSAccel.profile_agg.adwh_fact_profile_by_segment_ai_models d
WHERE d.model_id=a.model_id)
GROUP BY model_name,
model_type,
segment_name,
CASE
WHEN score BETWEEN 0 AND 24 THEN 'LOW'
WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
END;
이 인사이트의 모양 및 기능에 대한 자세한 내용은 Customer AI 채점 요약 위젯 설명서를 참조하십시오.
ID 중첩
이 통찰력에 의해 답변된 질문:
- 필터링된 대상에 대해 ID 유형 A과(와) ID 유형 B 간의 일반적인 교집합은 무엇입니까?
- 특정 ID 유형의 중복을 기반으로 고객 대상을 세분화하여 타깃팅된 마케팅 전략을 향상하려면 어떻게 해야 합니까?
- 교차하는 영역 내에서 캠페인 성과를 평가함으로써 얻을 수 있는 통찰력은 무엇입니까?
- 이러한 통찰력을 기반으로 향후 마케팅 노력을 최적화하려면 어떻게 해야 합니까?
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT Sum(overlap_col1) overlap_col1,
Sum(overlap_col2) overlap_col2,
Sum(overlap_count) Overlap_count
FROM
(SELECT 0 overlap_col1,
0 overlap_col2,
Sum(count_of_profiles) Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment
WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.segment_id = 1333234510
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace_by_segment.overlap_id IN
(SELECT a.overlap_id
FROM
(SELECT qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id overlap_id,
count(*) cnt_num
FROM qsaccel.profile_agg.adwh_dim_overlap_namespaces
WHERE qsaccel.profile_agg.adwh_dim_overlap_namespaces.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_namespaces in ('crmid',
'email')
GROUP BY qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id)a
WHERE a.cnt_num>1 )
UNION ALL SELECT count_of_profiles overlap_col1,
0 overlap_col2,
0 Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'crmid'
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10'
UNION ALL SELECT 0 overlap_col1,
count_of_profiles overlap_col2,
0 Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'email'
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10' ) a;
이 인사이트의 모양 및 기능에 대한 자세한 내용은 ID 중복 위젯 설명서를 참조하세요.
ID별 프로필
이 통찰력에 의해 답변된 질문:
- 선택한 대상에 대한 총 프로필 수 내에서 가장 높은 비율을 갖는 ID 유형은 무엇입니까?
- 선택한 대상에 대해 ID 유형 간에 큰 차이가 있습니까?
- 대상자별 ID 유형의 전체 분포는 무엇입니까?
- 다양한 대상에 대한 ID 수에 중요한 차이점이나 예외 항목이 있습니까?
이 통찰력을 생성하는 SQL을 표시하려면 선택합니다.
SELECT qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
sum(qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.count_of_profiles) count_of_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.segment_id = 1333234510
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.merge_policy_id = 1709997014
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_and_namespace_trendlines.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_dim_namespaces.namespace_description
ORDER BY count_of_profiles DESC;
이 인사이트의 모양과 기능에 대한 자세한 내용은 ID 위젯 설명서별 프로필을 참조하십시오.