Sensei Machine Learning API を使用したパッケージ化されたレシピの読み込み

NOTE
Data Science Workspaceは購入できなくなりました。
このドキュメントは、Data Science Workspaceの以前の使用権限を持つ既存のお客様を対象としています。

このチュートリアルでは、Sensei Machine Learning API を使用して、ユーザーインターフェイスのレシピとも呼ばれる Engine を作成します。

始める前に、Adobe Experience Platform Data Science Workspace では、API と UI 内で類似の要素を参照するために異なる用語を使用していることに注意してください。 API の用語はこのチュートリアル全体で使用され、次の表に、関連する用語の概要を示します。

UI の用語
API 用語
レシピ
エンジン
モデル
MLInstance
トレーニングと評価
実験
サービス
MLService

エンジンには、特定の問題を解決するための機械学習アルゴリズムとロジックが含まれています。次の図は、Data Science Workspace の API ワークフローを示すビジュアライゼーションを示しています。 このチュートリアルでは、機械学習モデルの頭脳であるエンジンの作成に焦点を当てます。

はじめに

このチュートリアルでは、Docker URL の形式のパッケージ化されたレシピファイルが必要です。 「ソースファイルをレシピにパッケージ化する」チュートリアルに従ってパッケージ化されたレシピファイルを作成するか、独自のレシピファイルを提供します。

  • {DOCKER_URL}: インテリジェント サービスの Docker イメージへのURLアドレス。

このチュートリアルでは、Platform API の呼び出しを正常に行うために、Adobe Experience Platform チュートリアル🔗Authenticationを完了している必要があります。次に示すように、すべての Experience Platform API 呼び出しに必要な各ヘッダーの値は認証チュートリアルで説明されています。

  • {ACCESS_TOKEN}:認証後に提供される特定の Bearer トークン値。
  • {ORG_ID}:組織の資格情報が、一意のAdobe Experience Platform統合で見つかりました。
  • {API_KEY}:固有の Adobe Experience Platform 統合で見つかった特定の API キーの値。

エンジンの作成

エンジンは、/engines エンドポイントにPOSTリクエストを行うことで作成できます。 作成されたエンジンは、API リクエストの一部として含める必要がある、パッケージ化されたレシピファイルの形式に基づいて設定されます。

Docker URL を使用したエンジンの作成 create-an-engine-with-a-docker-url

パッケージ化されたレシピファイルを Docker コンテナに格納してエンジンを作成するには、パッケージ化されたレシピファイルの Docker URL を指定する必要があります。

CAUTION
PythonまたはRを使用している場合は、以下のリクエストを使用してください。PySpark または Scala を使用している場合は、Python/R の例の下にある PySpark/Scala リクエスト の例を使用してください。

API 形式

POST /engines

Python/R をリクエスト

curl -X POST \
    https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: {ACCESS_TOKEN}' \
    -H 'X-API-KEY: {API_KEY}' \
    -H 'content-type: multipart/form-data' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H `x-sandbox-name: {SANDBOX_NAME}` \
    -F 'engine={
        "name": "Retail Sales Engine Python",
        "description": "A description for Retail Sales Engine, this Engines execution type is Python",
        "type": "Python"
        "artifacts": {
            "default": {
                "image": {
                    "location": "{DOCKER_URL}",
                    "name": "retail_sales_python",
                    "executionType": "Python"
                }
            }
        }
    }'
プロパティ
説明
engine.name
エンジンの名前。このエンジンに対応するレシピは、この値を継承して、ユーザーインターフェイスにレシピ Data Science Workspace 名前として表示します。
engine.description
エンジンのオプションの説明。このエンジンに対応するレシピは、この値を継承して、ユーザーインターフェイス Data Science Workspace レシピの説明として表示します。 このプロパティを削除しないでください。説明を指定しない場合は、この値を空白の文字列にします。
engine.type
エンジンの実行タイプ。この値は、Docker イメージが開発されている言語に対応します。 エンジンを作成するために Docker URLが提供されている場合、 type は、 PythonRPySparkSpark (Scala)、または Tensorflow のいずれかになります。
artifacts.default.image.location
あなたの {DOCKER_URL} はここに行きます。 完全な Docker URLの構造は次のとおりです。 your_docker_host.azurecr.io/docker_image_file:version
artifacts.default.image.name
Docker 画像ファイル の追加の名前。 このプロパティを削除しないでください。Docker 画像ファイル名を指定しない場合は、この値を空白の文字列にします。
artifacts.default.image.executionType
このエンジンの実行タイプ。 この値は、Docker イメージが開発される言語に対応しています。 エンジンを作成するために Docker URL が指定され executionType 場合、PythonRPySparkSpark (Scala)、Tensorflow のいずれかです。

PySpark をリクエスト

curl -X POST \
  https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: multipart/form-data' \
    -F 'engine={
    "name": "PySpark retail sales recipe",
    "description": "A description for this Engine",
    "type": "PySpark",
    "mlLibrary":"databricks-spark",
    "artifacts": {
        "default": {
            "image": {
                "name": "modelspark",
                "executionType": "PySpark",
                "packagingType": "docker",
                "location": "v1d2cs4mimnlttw.azurecr.io/sarunbatchtest:0.0.1"
            }
        }
    }
}'
プロパティ
説明
name
エンジンの名前。このエンジンに対応するレシピは、UI に表示されるこの値をレシピ名として継承します。
description
エンジンのオプションの説明。このエンジンに対応するレシピは、UI に表示されるこの値をレシピの説明として継承します。このプロパティが必要です。説明を指定しない場合は、値を空の文字列に設定します。
type
エンジンの実行タイプ。この値は、「PySpark」に基づいて Docker イメージが構築されている言語に対応します。
mlLibrary
PySpark と Scala のレシピ用のエンジンを作成する際に必要なフィールド。
artifacts.default.image.location
Docker URL によってリンクされた Docker イメージの場所。
artifacts.default.image.executionType
エンジンの実行タイプ。この値は、「Spark」に基づいて Docker イメージが構築される言語に対応します。

Request Scala

curl -X POST \
  https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: multipart/form-data' \
    -F 'engine={
    "name": "Spark retail sales recipe",
    "description": "A description for this Engine",
    "type": "Spark",
    "mlLibrary":"databricks-spark",
    "artifacts": {
        "default": {
            "image": {
                "name": "modelspark",
                "executionType": "Spark",
                "packagingType": "docker",
                "location": "v1d2cs4mimnlttw.azurecr.io/sarunbatchtest:0.0.1"
            }
        }
    }
}'
プロパティ
説明
name
エンジンの名前。このエンジンに対応するレシピは、UI に表示されるこの値をレシピ名として継承します。
description
エンジンのオプションの説明。このエンジンに対応するレシピは、UI に表示されるこの値をレシピの説明として継承します。このプロパティが必要です。説明を指定しない場合は、値を空の文字列に設定します。
type
エンジンの実行タイプ。この値は、「Spark」に基づいて Docker イメージが構築される言語に対応します。
mlLibrary
PySpark と Scala のレシピ用のエンジンを作成する際に必要なフィールド。
artifacts.default.image.location
Docker URL によってリンクされた Docker イメージの場所。
artifacts.default.image.executionType
エンジンの実行タイプ。この値は、Docker イメージが "Spark" に基づいて構築される言語に対応します。

応答

リクエストが成功した場合は、一意の ID (id)を含む、新しく作成されたエンジンの詳細を含むペイロードが返されます。 次の応答の例は、Python Engine 用です。 executionType キーと type キーは、指定されたPOSTに応じて変わります。

{
    "id": "{ENGINE_ID}",
    "name": "A name for this Engine",
    "description": "A description for this Engine",
    "type": "Python",
    "algorithm": "Classification",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "artifacts": {
        "default": {
            "image": {
                "location": "{DOCKER_URL}",
                "name": "An additional name for the Docker image",
                "executionType": "Python",
                "packagingType": "docker"
            }
        }
    }
}

成功応答は、新しく作成されたエンジンに関する情報を含む JSON ペイロードが表示されます。id キーは、一意のエンジン識別子を表し、次のチュートリアルで MLInstance を作成するために必要となります。次の手順に進む前に、エンジン識別子が保存されていることを確認します。

次の手順 next-steps

API を使用してエンジンを作成し、応答本文の一部として一意のエンジン識別子を取得しました。次のチュートリアルでは、API を使用してモデルの作成、トレーニング、評価をおこなう方法について学習しながら、このエンジン識別子を使用できます。

recommendation-more-help
cc79fe26-64da-411e-a6b9-5b650f53e4e9