MLInstances エンドポイント
MLInstance は、既存のエンジンと適切な設定セット(トレーニングパラメーター、スコアリングパラメーター、またはハードウェアリソース設定を定義する)とのペアリングです。
MLInstance の作成 create-an-mlinstance
MLInstance を作成するには、有効なエンジン ID({ENGINE_ID}
)と適切なデフォルト設定セットで構成されるリクエストペイロードを指定して POST リクエストを実行します。
エンジン ID が PySpark エンジンや Spark エンジンを参照する場合は、コア数やメモリ量など、計算リソースの量を設定できます。Python エンジンが参照される場合は、トレーニングとスコアリングのために、CPU と GPU のいずれかの使用を選択できます。詳しくは、「PySpark と Spark のリソース設定」と「Python CPU と GPU の設定」の付録の節を参照してください。
API 形式
POST /mlInstances
リクエスト
curl -X POST \
https://platform.adobe.io/data/sensei/mlInstances \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json' \
-d '{
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "training parameter",
"value": "parameter value"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "scoring parameter",
"value": "parameter value"
}
]
},
{
"name": "fp",
"parameters": [
{
"key": "feature pipeline parameter",
"value": "parameter value"
}
]
}
],
}'
name
description
engineId
tasks
応答
成功した応答は、一意の ID(id
)など、新たに作成された MLInstance の詳細が含まれるペイロードを返します。
{
"id": "46986c8f-7739-4376-8509-0178bdf32cda",
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "training parameter",
"value": "parameter value"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "scoring parameter",
"value": "parameter value"
}
]
},
{
"name": "fp",
"parameters": [
{
"key": "feature pipeline parameter",
"value": "parameter value"
}
]
}
]
}
MLInstance のリストの取得
MLInstance のリストは、単一の GET リクエストを実行することで取得できます。結果のフィルター処理を支援するために、リクエストパスでクエリーパラメーターを指定できます。使用可能なクエリのリストについては、「アセット取得のためのクエリーパラメーター」の付録の節を参照してください。
API 形式
GET /mlInstances
GET /mlInstances?{QUERY_PARAMETER}={VALUE}
GET /mlInstances?{QUERY_PARAMETER_1}={VALUE_1}&{QUERY_PARAMETER_2}={VALUE_2}
リクエスト
curl -X GET \
https://platform.adobe.io/data/sensei/mlInstances \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
応答
成功した応答は、MLInstance のリストとその詳細を返します。
{
"children": [
{
"id": "46986c8f-7739-4376-8509-0178bdf32cda",
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
},
{
"id": "56986c8f-7739-4376-8509-0178bdf32cda",
"name": "Retail Sales Model",
"description": "A Model created with the Retail Sales Recipe",
"engineId": "32f4166f-85ba-4130-a995-a2b8e1edde32",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
],
"_page": {
"property": "deleted==false",
"totalCount": 2,
"count": 2
}
}
特定の MLInstance の取得 retrieve-specific
特定の MLInstance の詳細を取得するには、リクエストパスに目的の MLInstance の ID を含む GET リクエストを実行します。
API 形式
GET /mlInstances/{MLINSTANCE_ID}
{MLINSTANCE_ID}
リクエスト
curl -X GET \
https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
応答
成功した応答は、MLInstance の詳細を返します。
{
"id": "46986c8f-7739-4376-8509-0178bdf32cda",
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "training parameter",
"value": "parameter value"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "scoring parameter",
"value": "parameter value"
}
]
},
{
"name": "featurePipeline",
"parameters": [
{
"key": "feature pipeline parameter",
"value": "parameter value"
}
]
}
]
}
MLInstance の更新
既存の MLInstance を更新するには、リクエストパスにターゲット MLInstance の ID を含む PUT リクエストを実行してプロパティを上書きし、更新されたプロパティを含む JSON ペイロードを指定します。
以下のサンプル API 呼び出しは、MLInstance のトレーニングパラメーターとスコアリングパラメーターを更新し、これらのプロパティを最初に次のように設定します。
{
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "00000000-0000-0000-0000-000000000000",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "learning_rate",
"value": "0.3"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "output_dataset_id",
"value": "output-dataset-000"
}
]
}
]
}
API 形式
PUT /mlInstances/{MLINSTANCE_ID}
{MLINSTANCE_ID}
リクエスト
curl -X PUT \
https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json' \
-d '{
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "00000000-0000-0000-0000-000000000000",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "learning_rate",
"value": "0.5"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "output_dataset_id",
"value": "output-dataset-001"
}
]
}
]
}'
応答
成功した応答は、MLInstance の更新された詳細を含むペイロードを返します。
{
"id": "46986c8f-7739-4376-8509-0178bdf32cda",
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "00000000-0000-0000-0000-000000000000",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-02T00:00:00.000Z",
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "learning_rate",
"value": "0.5"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "output_dataset_id",
"value": "output-data-set-001"
}
]
}
]
}
エンジン ID による MLInstance の削除
エンジン ID をクエリーパラメーターとして含む DELETE リクエストを実行すると、同じエンジンを共有するすべての MLInstance を削除できます。
API 形式
DELETE /mlInstances?engineId={ENGINE_ID}
{ENGINE_ID}
リクエスト
curl -X DELETE \
https://platform.adobe.io/data/sensei/mlInstances?engineId=22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
応答
{
"title": "Success",
"status": 200,
"detail": "MLInstances successfully deleted"
}
MLInstance の削除
リクエストパスにターゲット MLInstance の ID を含む DELETE リクエストを実行すると、1 つの MLInstance を削除できます。
API 形式
DELETE /mlInstances/{MLINSTANCE_ID}
{MLINSTANCE_ID}
リクエスト
curl -X DELETE \
https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
応答
{
"title": "Success",
"status": 200,
"detail": "MLInstance deletion was successful"
}