Créer un rapport de tendance d’événements
Ce document fournit un exemple de code SQL requis pour créer un rapport de tendances d’événements par jour sur une période spécifique. Avec Adobe Experience Platform Query Service, vous pouvez écrire des requêtes qui utilisent Experience Events pour capturer divers cas d’utilisation. Les événements d’expérience sont représentés par la classe ExperienceEvent du modèle de données d’expérience (XDM), qui capture un instantané non agrégé et immuable du système lorsqu’un utilisateur interagit avec un site web ou un service. Les événements d’expérience peuvent même être utilisés pour l’analyse du domaine temporel. Pour plus d’informations sur les cas d’utilisation qui impliquent Experience Events pour générer des rapports sur les visiteurs, reportez-vous à la section étapes suivantes .
Les rapports vous donnent accès aux données de Platform pour bénéficier des informations stratégiques de votre entreprise. Grâce à ces rapports, vous pouvez examiner vos données Platform de différentes manières, afficher les mesures clés dans des formats faciles à comprendre et partager les informations résultantes.
Vous trouverez plus d’informations sur XDM et Experience Events dans la XDM System présentation. En combinant Query Service à Experience Events, vous pouvez effectuer un suivi efficace des tendances comportementales parmi vos utilisateurs. Le document suivant fournit des exemples de requêtes impliquant Experience Events.
Objectifs
L’exemple suivant crée un rapport de tendance d’événements sur une période donnée avec un regroupement par date. Plus précisément, cet exemple SQL additionne diverses valeurs d’analyse sous la forme A
, B
et C
, puis additionne le nombre de fois où les parkas ont été vues sur une période d’un mois.
La colonne d’horodatage trouvée dans les jeux de données Experience Event est au format UTC. L’exemple utilise la fonction from_utc_timestamp()
pour transformer l’horodatage UTC en EDT, puis utilise la fonction date_format()
pour isoler la date du reste de l’horodatage.
SELECT
date_format( from_utc_timestamp(timestamp, 'EDT') , 'yyyy-MM-dd') as Day,
SUM(web.webPageDetails.pageviews.value) as pageViews,
SUM(_experience.analytics.event1to100.event1.value) as A,
SUM(_experience.analytics.event1to100.event2.value) as B,
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
CASE
WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas'
THEN 1
ELSE 0
END) as viewedParkas
FROM your_analytics_table
WHERE TIMESTAMP >= to_timestamp('2019-03-01') AND TIMESTAMP <= to_timestamp('2019-03-31')
GROUP BY Day
ORDER BY Day ASC, pageViews DESC;
Les résultats de cette requête sont présentés ci-dessous.
Day | pageViews | A | B | C | viewedParkas
-------------+-----------+--------+-------+---------+--------------
2019-03-01 | 55317.0 | 8503.0 | 804.0 | 1578.0 | 73
2019-03-02 | 55302.0 | 8600.0 | 854.0 | 1528.0 | 86
2019-03-03 | 54613.0 | 8162.0 | 795.0 | 1568.0 | 100
2019-03-04 | 54501.0 | 8479.0 | 832.0 | 1509.0 | 100
2019-03-05 | 54941.0 | 8603.0 | 816.0 | 1514.0 | 73
2019-03-06 | 54817.0 | 8434.0 | 855.0 | 1538.0 | 76
2019-03-07 | 55201.0 | 8604.0 | 843.0 | 1517.0 | 64
2019-03-08 | 55020.0 | 8490.0 | 849.0 | 1536.0 | 99
2019-03-09 | 43186.0 | 6736.0 | 643.0 | 1150.0 | 52
2019-03-10 | 48471.0 | 7542.0 | 772.0 | 1272.0 | 70
2019-03-11 | 56307.0 | 8721.0 | 818.0 | 1571.0 | 81
2019-03-12 | 55374.0 | 8653.0 | 843.0 | 1501.0 | 59
2019-03-13 | 55046.0 | 8509.0 | 887.0 | 1556.0 | 65
2019-03-14 | 55518.0 | 8551.0 | 848.0 | 1516.0 | 77
2019-03-15 | 55329.0 | 8575.0 | 818.0 | 1607.0 | 96
2019-03-16 | 55030.0 | 8651.0 | 815.0 | 1542.0 | 66
2019-03-17 | 55143.0 | 8435.0 | 774.0 | 1572.0 | 65
2019-03-18 | 54065.0 | 8211.0 | 816.0 | 1574.0 | 111
2019-03-19 | 55097.0 | 8395.0 | 771.0 | 1498.0 | 86
2019-03-20 | 55198.0 | 8472.0 | 863.0 | 1583.0 | 82
2019-03-21 | 54978.0 | 8490.0 | 820.0 | 1580.0 | 83
2019-03-22 | 55464.0 | 8561.0 | 820.0 | 1559.0 | 83
2019-03-23 | 55384.0 | 8482.0 | 800.0 | 1139.0 | 82
2019-03-24 | 55295.0 | 8594.0 | 841.0 | 1382.0 | 78
2019-03-25 | 42069.0 | 6365.0 | 606.0 | 1509.0 | 62
2019-03-26 | 49724.0 | 7629.0 | 724.0 | 1553.0 | 44
2019-03-27 | 55111.0 | 8524.0 | 804.0 | 1524.0 | 94
2019-03-28 | 55030.0 | 8439.0 | 822.0 | 1554.0 | 73
2019-03-29 | 55281.0 | 8601.0 | 854.0 | 1580.0 | 73
2019-03-30 | 55162.0 | 8538.0 | 846.0 | 1534.0 | 79
2019-03-31 | 55437.0 | 8486.0 | 807.0 | 1649.0 | 68
(31 rows)
Étapes suivantes next-steps
En lisant ce document, vous comprenez mieux comment utiliser Query Service avec Experience Events pour effectuer un suivi efficace des tendances comportementales parmi vos utilisateurs.
Pour en savoir plus sur d'autres cas d'utilisation basés sur les visiteurs qui utilisent Experience Events, consultez les documents suivants :