Correspondance floue dans Query Service
Utilisez une correspondance approximative sur vos données Adobe Experience Platform pour renvoyer les correspondances les plus probables et les plus approximatives sans avoir à rechercher des chaînes avec des caractères identiques. Cela permet une recherche beaucoup plus flexible de vos données et rend vos données plus accessibles en gagnant du temps et en faisant des efforts.
Au lieu d’essayer de reformater les chaînes de recherche afin de les faire correspondre, la correspondance approximative analyse le rapport de similarité entre deux séquences et renvoie le pourcentage de similarité. FuzzyWuzzy est recommandé pour ce processus, car ses fonctions sont plus adaptées à la correspondance de chaînes dans des situations plus complexes que regex ou difflib.
L’exemple fourni dans ce cas d’utilisation se concentre sur la mise en correspondance d’attributs similaires à partir d’une recherche de chambre d’hôtel dans deux jeux de données d’agence de voyages différents. Le document indique comment faire correspondre des chaînes en fonction de leur degré de similarité à partir de sources de données distinctes volumineuses. Dans cet exemple, une correspondance approximative compare les résultats de recherche des fonctionnalités d’une pièce des agences de voyage Luma et Acme.
Commencer getting-started
Dans le cadre de ce processus, vous devez entraîner un modèle d’apprentissage automatique. Ce document suppose une connaissance pratique d’un ou de plusieurs environnements d’apprentissage automatique.
Cet exemple utilise Python et l’environnement de développement Jupyter Notebook. Bien qu’il existe de nombreuses options disponibles, Jupyter Notebook est recommandé car il s’agit d’une application web open source qui a de faibles exigences en matière de calcul. Il peut être téléchargé à partir du site officiel de Jupyter.
Avant de commencer, vous devez importer les bibliothèques nécessaires. FuzzyWuzzy est une bibliothèque Python Open Source construite sur la bibliothèque difflib et utilisée pour faire correspondre des chaînes. Il utilise Levenshtein Distance pour calculer les différences entre les séquences et les motifs. FuzzyWuzzy a les exigences suivantes :
- Python 2.4 (ou version ultérieure)
- Python-Levenshtein
Sur la ligne de commande, utilisez la commande suivante pour installer FuzzyWuzzy :
pip install fuzzywuzzy
Ou utilisez la commande suivante pour installer Python-Levenshtein également :
pip install fuzzywuzzy[speedup]
Vous trouverez plus d'informations techniques sur Fuzzywuzzy dans leur documentation officielle.
Connexion à Query Service
Vous devez connecter votre modèle d’apprentissage automatique à Query Service en fournissant vos informations de connexion. Les informations d’identification arrivant à expiration et non arrivant à expiration peuvent être fournies. Pour plus d’informations sur la manière d’acquérir les informations d’identification nécessaires, consultez le guide d’identification . Si vous utilisez Jupyter Notebook, veuillez lire le guide complet sur la connexion à Query Service.
Veillez également à importer le package numpy dans votre environnement Python pour activer l’algèbre linéaire.
import numpy as np
Les commandes ci-dessous sont nécessaires pour se connecter à Query Service à partir de Jupyter Notebook :
import psycopg2
conn = psycopg2.connect('''
sslmode=require
host=<YOUR_ORGANIZATION_ID>
port=80
dbname=prod:all
user=<YOUR_ADOBE_ID_TO_CONNECT_TO_QUERY_SERVICE>
password=<YOUR_QUERY_SERVICE_PASSWORD>
''')
cur = conn.cursor()
Votre instance Jupyter Notebook est maintenant connectée à Query Service. Si la connexion est établie, aucun message ne s’affiche. Si la connexion a échoué, une erreur s’affiche.
Données Draw du jeu de données Luma luma-dataset
Les données à analyser sont extraites du premier jeu de données avec les commandes suivantes. Pour plus de concision, les exemples se sont limités aux 10 premiers résultats de la colonne.
cur.execute('''SELECT * FROM luma;
''')
luma = np.array([r[0] for r in cur])
luma[:10]
Sélectionnez Output pour afficher le tableau renvoyé.
code language-console |
---|
|
Données Draw du jeu de données Acme acme-dataset
Les données à analyser sont désormais extraites du deuxième jeu de données avec les commandes suivantes. Pour être plus concis, les exemples se sont limités aux 10 premiers résultats de la colonne.
cur.execute('''SELECT * FROM acme;
''')
acme = np.array([r[0] for r in cur])
acme[:10]
Sélectionnez Output pour afficher le tableau renvoyé.
code language-console |
---|
|
Créer une fonction de notation floue fuzzy-scoring
Ensuite, vous devez importer fuzz
à partir de la bibliothèque FuzzyWuzzy et exécuter une comparaison des proportions partielles des chaînes. La fonction de rapport partiel vous permet d’effectuer une correspondance sous-chaîne. Cette chaîne prend la chaîne la plus courte et correspond à toutes les sous-chaînes de même longueur. La fonction renvoie un pourcentage de similarité allant jusqu’à 100 %. Par exemple, la fonction de rapport partiel compare les chaînes suivantes "chambre de luxe", "lit de roi" et "chambre de roi de luxe" et renvoie un score de similarité de 69 %.
Dans le cas d’utilisation de la correspondance de chambre d’hôtel, cela se fait à l’aide des commandes suivantes :
from fuzzywuzzy import fuzz
def compute_match_score(x,y):
return fuzz.partial_ratio(x,y)
Importez ensuite cdist
depuis la bibliothèque SciPy pour calculer la distance entre chaque paire dans les deux collections d’entrées. Cela calcule les scores parmi toutes les paires de chambres d’hôtel fournies par chacune des agences de voyage.
from scipy.spatial.distance import cdist
pairwise_distance = cdist(luma.reshape((-1,1)),acme.reshape((-1,1)),compute_match_score)
Créez des mappages entre les deux colonnes à l’aide du score de jointure flou.
Maintenant que les colonnes ont été notées en fonction de la distance, vous pouvez indexer les paires et ne conserver que les correspondances ayant obtenu un score supérieur à un certain pourcentage. Cet exemple conserve uniquement les paires qui correspondent avec un score de 70 % ou plus.
matched_pairs = []
for i,c1 in enumerate(luma):
idx = np.where(pairwise_distance[i,:] > 70)[0]
for j in idx:
matched_pairs.append((luma[i].replace("'","''"),acme[j].replace("'","''")))
Les résultats peuvent être affichés avec la commande suivante. Pour plus de concision, les résultats sont limités à dix lignes.
matched_pairs[:10]
Sélectionnez Output pour afficher les résultats.
code language-console |
---|
|
Les résultats sont ensuite associés à l’aide de SQL avec la commande suivante :
matching_sql = ' OR '.join(["(e.luma = '{}' AND b.acme = '{}')".format(c1,c2) for c1,c2 in matched_pairs])
Application des mappages pour effectuer une jointure floue dans Query Service mappings-for-query-service
Ensuite, les paires de correspondance à score élevé sont unies à l’aide de SQL pour créer un nouveau jeu de données.
:
cur.execute('''
SELECT * FROM luma e
CROSS JOIN acme b
WHERE
{}
'''.format(matching_sql))
[r for r in cur]
Sélectionnez Output pour afficher les résultats de cette jointure.
code language-console |
---|
|
Enregistrer les résultats de correspondance approximative dans Platform save-to-platform
Enfin, les résultats de la correspondance approximative peuvent être enregistrés en tant que jeu de données à utiliser dans Adobe Experience Platform à l’aide de SQL.
cur.execute('''
Create table luma_acme_join
AS
(SELECT * FROM luma e
CROSS JOIN acme b
WHERE
{})
'''.format(matching_sql))