Sintaxis SQL en el servicio de consultas

Puede utilizar ANSI SQL estándar para instrucciones SELECT y otros comandos limitados en Adobe Experience Platform Query Service. Este documento describe la sintaxis SQL admitida por Query Service.

SELECCIONAR consultas select-queries

La siguiente sintaxis define una consulta SELECT admitida por Query Service:

[ WITH with_query [, ...] ]
SELECT [ ALL | DISTINCT [( expression [, ...] ) ] ]
    [ * | expression [ [ AS ] output_name ] [, ...] ]
    [ FROM from_item [, ...] ]
    [ SNAPSHOT { SINCE start_snapshot_id | AS OF end_snapshot_id | BETWEEN start_snapshot_id AND end_snapshot_id } ]
    [ WHERE condition ]
    [ GROUP BY grouping_element [, ...] ]
    [ HAVING condition [, ...] ]
    [ WINDOW window_name AS ( window_definition ) [, ...] ]
    [ { UNION | INTERSECT | EXCEPT | MINUS } [ ALL | DISTINCT ] select ]
    [ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]
    [ LIMIT { count | ALL } ]
    [ OFFSET start ]

La sección de pestañas a continuación proporciona las opciones disponibles para las palabras clave FROM, GROUP y WITH.

`from_item`
code language-sql
table_name [ * ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
code language-sql
[ LATERAL ] ( select ) [ AS ] alias [ ( column_alias [, ...] ) ]
code language-sql
with_query_name [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
code language-sql
from_item [ NATURAL ] join_type from_item [ ON join_condition | USING ( join_column [, ...] ) ]
`grouping_element`
code language-sql
( )
code language-sql
expression
code language-sql
( expression [, ...] )
code language-sql
ROLLUP ( { expression | ( expression [, ...] ) } [, ...] )
code language-sql
CUBE ( { expression | ( expression [, ...] ) } [, ...] )
code language-sql
GROUPING SETS ( grouping_element [, ...] )
`with_query`
code language-sql
 with_query_name [ ( column_name [, ...] ) ] AS ( select | values )

Las siguientes subsecciones proporcionan detalles sobre cláusulas adicionales que puede utilizar en las consultas, siempre que sigan el formato descrito anteriormente.

Cláusula SNAPSHOT

Esta cláusula se puede utilizar para leer de forma incremental los datos de una tabla en función de los ID de instantánea. Un ID de instantánea es un marcador de punto de comprobación representado por un número de tipo Long que se aplica a una tabla de lago de datos cada vez que se escriben datos en ella. La cláusula SNAPSHOT se adjunta a la relación de tabla a la que se utiliza junto a.

    [ SNAPSHOT { SINCE start_snapshot_id | AS OF end_snapshot_id | BETWEEN start_snapshot_id AND end_snapshot_id } ]

Ejemplo

SELECT * FROM table_to_be_queried SNAPSHOT SINCE start_snapshot_id;

SELECT * FROM table_to_be_queried SNAPSHOT AS OF end_snapshot_id;

SELECT * FROM table_to_be_queried SNAPSHOT BETWEEN start_snapshot_id AND end_snapshot_id;

SELECT * FROM table_to_be_queried SNAPSHOT BETWEEN HEAD AND start_snapshot_id;

SELECT * FROM table_to_be_queried SNAPSHOT BETWEEN end_snapshot_id AND TAIL;

SELECT * FROM (SELECT id FROM table_to_be_queried BETWEEN start_snapshot_id AND end_snapshot_id) C

(SELECT * FROM table_to_be_queried SNAPSHOT SINCE start_snapshot_id) a
  INNER JOIN
(SELECT * from table_to_be_joined SNAPSHOT AS OF your_chosen_snapshot_id) b
  ON a.id = b.id;

En la tabla siguiente se explica el significado de cada opción de sintaxis dentro de la cláusula SNAPSHOT.

Sintaxis
Significado
SINCE start_snapshot_id
Lee datos a partir del ID de instantánea especificado (exclusivo).
AS OF end_snapshot_id
Lee los datos tal como estaban en el ID de instantánea especificado (incluido).
BETWEEN start_snapshot_id AND end_snapshot_id
Lee datos entre los ID de instantánea de inicio y fin especificados. Es exclusivo de start_snapshot_id e incluye end_snapshot_id.
BETWEEN HEAD AND start_snapshot_id
Lee datos desde el principio (antes de la primera instantánea) hasta el ID de instantánea de inicio especificado (incluido). Tenga en cuenta que esto solo devuelve filas en start_snapshot_id.
BETWEEN end_snapshot_id AND TAIL
Lee datos inmediatamente después del end-snapshot_id especificado hasta el final del conjunto de datos (sin incluir el ID de instantánea). Esto significa que si end_snapshot_id es la última instantánea del conjunto de datos, la consulta devolverá cero filas porque no hay instantáneas más allá de la última instantánea.
SINCE start_snapshot_id INNER JOIN table_to_be_joined AS OF your_chosen_snapshot_id ON table_to_be_queried.id = table_to_be_joined.id
Lee datos que comienzan desde el identificador de instantánea especificado de table_to_be_queried y los une con los datos de table_to_be_joined tal y como estaban a las your_chosen_snapshot_id. La unión se basa en las ID coincidentes de las columnas ID de las dos tablas que se unen.

Una cláusula SNAPSHOT funciona con una tabla o alias de tabla, pero no sobre una subconsulta o vista. Una cláusula SNAPSHOT funciona en cualquier lugar donde se pueda aplicar una consulta SELECT en una tabla.

Además, puede usar HEAD y TAIL como valores de desplazamiento especiales para cláusulas de instantánea. Usar HEAD hace referencia a un desplazamiento antes de la primera instantánea, mientras que TAIL hace referencia a un desplazamiento después de la última instantánea.

NOTE
Si está realizando una consulta entre dos ID de instantánea, pueden producirse los dos escenarios siguientes si la instantánea de inicio ha caducado y se ha establecido el indicador de comportamiento de reserva opcional (resolve_fallback_snapshot_on_failure):
  • Si se establece el indicador de comportamiento de reserva opcional, el servicio de consultas selecciona la instantánea disponible más antigua, la define como la instantánea de inicio y devuelve los datos entre la instantánea disponible más antigua y la instantánea de finalización especificada. Estos datos son inclusive de la instantánea más temprana disponible.

Cláusula WHERE

De manera predeterminada, las coincidencias producidas por una cláusula WHERE en una consulta SELECT distinguen entre mayúsculas y minúsculas. Si desea que las coincidencias distingan entre mayúsculas y minúsculas, puede usar la palabra clave ILIKE en lugar de LIKE.

    [ WHERE condition { LIKE | ILIKE | NOT LIKE | NOT ILIKE } pattern ]

La lógica de las cláusulas LIKE e ILIKE se explica en la siguiente tabla:

Cláusa
Operador
WHERE condition LIKE pattern
~~
WHERE condition NOT LIKE pattern
!~~
WHERE condition ILIKE pattern
~~*
WHERE condition NOT ILIKE pattern
!~~*

Ejemplo

SELECT * FROM Customers
WHERE CustomerName ILIKE 'a%';

Esta consulta devuelve clientes con nombres que comienzan por "A" o "a".

UNIRSE

Una consulta SELECT que utiliza combinaciones tiene la siguiente sintaxis:

SELECT statement
FROM statement
[JOIN | INNER JOIN | LEFT JOIN | LEFT OUTER JOIN | RIGHT JOIN | RIGHT OUTER JOIN | FULL JOIN | FULL OUTER JOIN]
ON join condition

UNION, INTERSECT y EXCEPT

Las cláusulas UNION, INTERSECT y EXCEPT se utilizan para combinar o excluir filas similares de dos o más tablas:

SELECT statement 1
[UNION | UNION ALL | UNION DISTINCT | INTERSECT | EXCEPT | MINUS]
SELECT statement 2

CREAR TABLA COMO SELECCIÓN create-table-as-select

La siguiente sintaxis define una consulta CREATE TABLE AS SELECT (CTAS):

CREATE TABLE table_name [ WITH (schema='target_schema_title', rowvalidation='false', label='PROFILE') ] AS (select_query)
Parámetros
Descripción
schema
Título del esquema XDM. Utilice esta cláusula solo si desea utilizar un esquema XDM existente para el nuevo conjunto de datos creado por la consulta CTAS.
rowvalidation
(Opcional) Especifica si el usuario desea la validación a nivel de fila de cada nuevo lote introducido para el conjunto de datos recién creado. El valor predeterminado es true.
label
Cuando cree un conjunto de datos con una consulta CTAS, utilice esta etiqueta con el valor de profile para etiquetar el conjunto de datos como habilitado para el perfil. Esto significa que el conjunto de datos se marca automáticamente para el perfil a medida que se crea. Vea el documento de extensiones de atributos derivadas para obtener más información sobre el uso de label.
select_query
Una instrucción SELECT. La sintaxis de la consulta SELECT se encuentra en la sección SELECT queries.

Ejemplo

CREATE TABLE Chairs AS (SELECT color, count(*) AS no_of_chairs FROM Inventory i WHERE i.type=="chair" GROUP BY i.color)

CREATE TABLE Chairs WITH (schema='target schema title', label='PROFILE') AS (SELECT color, count(*) AS no_of_chairs FROM Inventory i WHERE i.type=="chair" GROUP BY i.color)

CREATE TABLE Chairs AS (SELECT color FROM Inventory SNAPSHOT SINCE 123)
NOTE
La instrucción SELECT debe tener un alias para las funciones de agregado como COUNT, SUM, MIN, etc. Además, la instrucción SELECT se puede proporcionar con o sin paréntesis (). Puede proporcionar una cláusula SNAPSHOT para leer los deltas incrementales en la tabla de destino.

INSERTAR EN

El comando INSERT INTO se define de la siguiente manera:

INSERT INTO table_name select_query
Parámetros
Descripción
table_name
Nombre de la tabla en la que desea insertar la consulta.
select_query
Una instrucción SELECT. La sintaxis de la consulta SELECT se encuentra en la sección SELECT queries.

Ejemplo

NOTE
El siguiente es un ejemplo inventado y simplemente con fines educativos.
INSERT INTO Customers SELECT SupplierName, City, Country FROM OnlineCustomers;

INSERT INTO Customers AS (SELECT * from OnlineCustomers SNAPSHOT AS OF 345)
INFO
no debe incluir la instrucción SELECT entre paréntesis (). Además, el esquema del resultado de la instrucción SELECT debe ajustarse al de la tabla definida en la instrucción INSERT INTO. Puede proporcionar una cláusula SNAPSHOT para leer los deltas incrementales en la tabla de destino.

La mayoría de los campos de un esquema XDM real no se encuentran en el nivel raíz y SQL no permite el uso de notación de puntos. Para lograr un resultado realista utilizando campos anidados, debe asignar cada campo en la ruta de acceso INSERT INTO.

Para INSERT INTO rutas de acceso anidadas, utilice la sintaxis siguiente:

INSERT INTO [dataset]
SELECT struct([source field1] as [target field in schema],
[source field2] as [target field in schema],
[source field3] as [target field in schema]) [tenant name]
FROM [dataset]

Ejemplo

INSERT INTO Customers SELECT struct(SupplierName as Supplier, City as SupplierCity, Country as SupplierCountry) _Adobe FROM OnlineCustomers;

SOLTAR TABLA

El comando DROP TABLE quita una tabla existente y elimina el directorio asociado a la tabla del sistema de archivos si no es una tabla externa. Si la tabla no existe, se produce una excepción.

DROP TABLE [IF EXISTS] [db_name.]table_name
Parámetros
Descripción
IF EXISTS
Si se especifica, no se produce ninguna excepción si la tabla no existe.

CREAR BASE DE DATOS

El comando CREATE DATABASE crea una base de datos de Azure Data Lake Storage (ADLS).

CREATE DATABASE [IF NOT EXISTS] db_name

SOLTAR BASE DE DATOS

El comando DROP DATABASE elimina la base de datos de una instancia.

DROP DATABASE [IF EXISTS] db_name
Parámetros
Descripción
IF EXISTS
Si se especifica, no se produce ninguna excepción si la base de datos no existe.

SOLTAR ESQUEMA

El comando DROP SCHEMA quita un esquema existente.

DROP SCHEMA [IF EXISTS] db_name.schema_name [ RESTRICT | CASCADE]
Parámetros
Descripción
IF EXISTS
Si se especifica este parámetro y el esquema no existe, no se produce ninguna excepción.
RESTRICT
El valor predeterminado del modo. Si se especifica, el esquema solo se borra si no contiene tablas.
CASCADE
Si se especifica, el esquema se suelta junto con todas las tablas presentes en el esquema.

CREAR VISTA create-view

Una vista SQL es una tabla virtual basada en el conjunto de resultados de una instrucción SQL. Cree una vista con la instrucción CREATE VIEW y asígnele un nombre. A continuación, puede utilizar ese nombre para hacer referencia a los resultados de la consulta. Esto facilita la reutilización de consultas complejas.

La siguiente sintaxis define una consulta CREATE VIEW para un conjunto de datos. Este conjunto de datos puede ser un ADLS o un conjunto de datos de almacén acelerado.

CREATE VIEW view_name AS select_query
Parámetros
Descripción
view_name
Nombre de la vista que se va a crear.
select_query
Una instrucción SELECT. La sintaxis de la consulta SELECT se encuentra en la sección SELECT queries.

Ejemplo

CREATE VIEW V1 AS SELECT color, type FROM Inventory

CREATE OR REPLACE VIEW V1 AS SELECT model, version FROM Inventory

La sintaxis siguiente define una consulta CREATE VIEW que crea una vista en el contexto de una base de datos y un esquema.

Ejemplo

CREATE VIEW db_name.schema_name.view_name AS select_query
CREATE OR REPLACE VIEW db_name.schema_name.view_name AS select_query
Parámetros
Descripción
db_name
Nombre de la base de datos.
schema_name
Nombre del esquema.
view_name
Nombre de la vista que se va a crear.
select_query
Una instrucción SELECT. La sintaxis de la consulta SELECT se encuentra en la sección SELECT queries.

Ejemplo

CREATE VIEW <dbV1 AS SELECT color, type FROM Inventory;

CREATE OR REPLACE VIEW V1 AS SELECT model, version FROM Inventory;

MOSTRAR VISTAS

La siguiente consulta muestra la lista de vistas.

SHOW VIEWS;
 Db Name  | Schema Name | Name  | Id       |  Dataset Dependencies | Views Dependencies | TYPE
----------------------------------------------------------------------------------------------
 qsaccel  | profile_agg | view1 | view_id1 | dwh_dataset1          |                    | DWH
          |             | view2 | view_id2 | adls_dataset          | adls_views         | ADLS
(2 rows)

COLOCAR VISTA

La siguiente sintaxis define una consulta DROP VIEW:

DROP VIEW [IF EXISTS] view_name
Parámetros
Descripción
IF EXISTS
Si se especifica, no se produce ninguna excepción si la vista no existe.
view_name
Nombre de la vista que se va a eliminar.

Ejemplo

DROP VIEW v1
DROP VIEW IF EXISTS v1

Bloque anónimo anonymous-block

Un bloque anónimo consta de dos secciones: ejecutable y de control de excepciones. En un bloque anónimo, la sección ejecutable es obligatoria. Sin embargo, la sección de control de excepciones es opcional.

El siguiente ejemplo muestra cómo crear un bloque con una o más instrucciones que se van a ejecutar juntas:

$$BEGIN
  statementList
[EXCEPTION exceptionHandler]
$$END

exceptionHandler:
      WHEN OTHER
      THEN statementList

statementList:
    : (statement (';')) +

A continuación se muestra un ejemplo con un bloque anónimo.

$$BEGIN
   SET @v_snapshot_from = select parent_id  from (select history_meta('email_tracking_experience_event_dataset') ) tab where is_current;
   SET @v_snapshot_to = select snapshot_id from (select history_meta('email_tracking_experience_event_dataset') ) tab where is_current;
   SET @v_log_id = select now();
   CREATE TABLE tracking_email_id_incrementally
     AS SELECT _id AS id FROM email_tracking_experience_event_dataset SNAPSHOT BETWEEN @v_snapshot_from AND @v_snapshot_to;

EXCEPTION
  WHEN OTHER THEN
    DROP TABLE IF EXISTS tracking_email_id_incrementally;
    SELECT 'ERROR';
$$END;

Instrucciones condicionales en un bloque anónimo conditional-anonymous-block-statements

La estructura de control IF-THEN-ELSE permite la ejecución condicional de una lista de instrucciones cuando una condición se evalúa como TRUE. Esta estructura de control sólo es aplicable dentro de un bloque anónimo. Si esta estructura se utiliza como comando independiente, se produce un error de sintaxis ("Comando no válido fuera de bloque anónimo").

El siguiente fragmento de código muestra el formato correcto para una instrucción condicional IF-THEN-ELSE en un bloque anónimo.

IF booleanExpression THEN
   List of statements;
ELSEIF booleanExpression THEN
   List of statements;
ELSEIF booleanExpression THEN
   List of statements;
ELSE
   List of statements;
END IF

Ejemplo

El ejemplo siguiente ejecuta SELECT 200;.

$$BEGIN
    SET @V = SELECT 2;
    SELECT @V;
    IF @V = 1 THEN
       SELECT 100;
    ELSEIF @V = 2 THEN
       SELECT 200;
    ELSEIF @V = 3 THEN
       SELECT 300;
    ELSE
       SELECT 'DEFAULT';
    END IF;

 END$$;

Esta estructura se puede usar con raise_error(); para devolver un mensaje de error personalizado. El bloque de código que se muestra a continuación finaliza el bloque anónimo con "mensaje de error personalizado".

Ejemplo

$$BEGIN
    SET @V = SELECT 5;
    SELECT @V;
    IF @V = 1 THEN
       SELECT 100;
    ELSEIF @V = 2 THEN
       SELECT 200;
    ELSEIF @V = 3 THEN
       SELECT 300;
    ELSE
       SELECT raise_error('custom error message');
    END IF;

 END$$;

Instrucciones IF anidadas

Las instrucciones IF anidadas se admiten en bloques anónimos.

Ejemplo

$$BEGIN
    SET @V = SELECT 1;
    IF @V = 1 THEN
       SELECT 100;
       IF @V > 0 THEN
         SELECT 1000;
       END IF;
    END IF;

 END$$;

Bloques de excepción

Los bloques de excepción son compatibles con los bloques anónimos.

Ejemplo

$$BEGIN
    SET @V = SELECT 2;
    IF @V = 1 THEN
       SELECT 100;
    ELSEIF @V = 2 THEN
       SELECT raise_error(concat('custom-error for v= ', '@V' ));

    ELSEIF @V = 3 THEN
       SELECT 300;
    ELSE
       SELECT 'DEFAULT';
    END IF;
EXCEPTION WHEN OTHER THEN
  SELECT 'THERE WAS AN ERROR';
 END$$;

Automático a JSON auto-to-json

El servicio de consulta admite una configuración opcional de nivel de sesión para devolver campos complejos de nivel superior desde consultas SELECT interactivas como cadenas JSON. La configuración auto_to_json permite que los datos de campos complejos se devuelvan como JSON y luego se analicen en objetos JSON mediante bibliotecas estándar.

Establezca el indicador de características auto_to_json en true antes de ejecutar la consulta SELECT que contiene campos complejos.

set auto_to_json=true;

Antes de establecer la marca auto_to_json

La siguiente tabla proporciona un resultado de consulta de ejemplo antes de aplicar la configuración auto_to_json. En ambos casos se utilizó la misma consulta SELECT (como se ve a continuación) dirigida a una tabla con campos complejos.

SELECT * FROM TABLE_WITH_COMPLEX_FIELDS LIMIT 2;

Los resultados son los siguientes:

                _id                |                                _experience                                 | application  |                   commerce                   | dataSource |                               device                               |                       endUserIDs                       |                                                                                                environment                                                                                                |                     identityMap                     |                              placeContext                               |   receivedTimestamp   |       timestamp       | userActivityRegion |                                         web                                          | _adcstageforpqs
-----------------------------------+----------------------------------------------------------------------------+--------------+----------------------------------------------+------------+--------------------------------------------------------------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------+-------------------------------------------------------------------------+-----------------------+-----------------------+--------------------+--------------------------------------------------------------------------------------+-----------------
 31892EE15DE00000-401D52664FF48A52 | ("("("(1,1)","(1,1)")","(-209479095,4085488201,-2105158467,2189808829)")") | (background) | (NULL,"(USD,NULL)",NULL,NULL,NULL,NULL,NULL) | (475341)   | (32,768,1024,205202,https://ns.adobe.com/xdm/external/deviceatlas) | ("("(31892EE080007B35-E6CE00000000000,"(AAID)",t)")")  | ("(en-US,f,f,t,1.6,"Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_1 like Mac OS X; ja-jp) AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5 Mobile/8B117 Safari/6531.22.7",490,1125)",xo.net,64.3.235.13)     | [AAID -> "{(31892EE080007B35-E6CE00000000000,t)}"]  | ("("(34.01,-84.0)",lawrenceville,US,524,30043,ga)",600)                 | 2022-09-02 19:47:14.0 | 2022-09-02 19:47:14.0 | (UT1)              | ("(f,Search Results,"(1.0)")","(http://www.google.com/search?ie=UTF-8&q=,internal)") |
 31892EE15DE00000-401B92664FF48AE8 | ("("("(1,1)","(1,1)")","(-209479095,4085488201,-2105158467,2189808829)")") | (background) | (NULL,"(USD,NULL)",NULL,NULL,NULL,NULL,NULL) | (475341)   | (32,768,1024,205202,https://ns.adobe.com/xdm/external/deviceatlas) | ("("(31892EE100007BF3-215FE00000000001,"(AAID)",t)")") | ("(en-US,f,f,t,1.5,"Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_1 like Mac OS X; ja-jp) AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5 Mobile/8B117 Safari/6531.22.7",768,556)",ntt.net,219.165.108.145) | [AAID -> "{(31892EE100007BF3-215FE00000000001,t)}"] | ("("(34.989999999999995,138.42)",shizuoka,JP,392005,420-0812,22)",-240) | 2022-09-02 19:47:14.0 | 2022-09-02 19:47:14.0 | (UT1)              | ("(f,Home - JJEsquire,"(1.0)")","(NULL,typed_bookmarked)")                           |
(2 rows)

Después de establecer la marca auto_to_json

En la tabla siguiente se muestra la diferencia en los resultados que tiene la configuración auto_to_json en el conjunto de datos resultante. Se utilizó la misma consulta SELECT en ambos casos.

                _id                |   receivedTimestamp   |       timestamp       |                                                                                                                   _experience                                                                                                                   |           application            |             commerce             |    dataSource    |                                                                  device                                                                   |                                                   endUserIDs                                                   |                                                                                                                                                                                           environment                                                                                                                                                                                            |                             identityMap                              |                                                                                            placeContext                                                                                            |      userActivityRegion      |                                                                                     web                                                                                      | _adcstageforpqs
-----------------------------------+-----------------------+-----------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+----------------------------------+------------------+-------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------
 31892EE15DE00000-401D52664FF48A52 | 2022-09-02 19:47:14.0 | 2022-09-02 19:47:14.0 | {"analytics":{"customDimensions":{"eVars":{"eVar1":"1","eVar2":"1"},"props":{"prop1":"1","prop2":"1"}},"environment":{"browserID":-209479095,"browserIDStr":"4085488201","operatingSystemID":-2105158467,"operatingSystemIDStr":"2189808829"}}} | {"userPerspective":"background"} | {"order":{"currencyCode":"USD"}} | {"_id":"475341"} | {"colorDepth":32,"screenHeight":768,"screenWidth":1024,"typeID":"205202","typeIDService":"https://ns.adobe.com/xdm/external/deviceatlas"} | {"_experience":{"aaid":{"id":"31892EE080007B35-E6CE00000000000","namespace":{"code":"AAID"},"primary":true}}}  | {"browserDetails":{"acceptLanguage":"en-US","cookiesEnabled":false,"javaEnabled":false,"javaScriptEnabled":true,"javaScriptVersion":"1.6","userAgent":"Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_1 like Mac OS X; ja-jp) AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5 Mobile/8B117 Safari/6531.22.7","viewportHeight":490,"viewportWidth":1125},"domain":"xo.net","ipV4":"64.3.235.13"}     | {"AAID":[{"id":"31892EE080007B35-E6CE00000000000","primary":true}]}  | {"geo":{"_schema":{"latitude":34.01,"longitude":-84.0},"city":"lawrenceville","countryCode":"US","dmaID":524,"postalCode":"30043","stateProvince":"ga"},"localTimezoneOffset":600}                 | {"dataCenterLocation":"UT1"} | {"webPageDetails":{"isHomePage":false,"name":"Search Results","pageViews":{"value":1.0}},"webReferrer":{"URL":"http://www.google.com/search?ie=UTF-8&q=","type":"internal"}} |
 31892EE15DE00000-401B92664FF48AE8 | 2022-09-02 19:47:14.0 | 2022-09-02 19:47:14.0 | {"analytics":{"customDimensions":{"eVars":{"eVar1":"1","eVar2":"1"},"props":{"prop1":"1","prop2":"1"}},"environment":{"browserID":-209479095,"browserIDStr":"4085488201","operatingSystemID":-2105158467,"operatingSystemIDStr":"2189808829"}}} | {"userPerspective":"background"} | {"order":{"currencyCode":"USD"}} | {"_id":"475341"} | {"colorDepth":32,"screenHeight":768,"screenWidth":1024,"typeID":"205202","typeIDService":"https://ns.adobe.com/xdm/external/deviceatlas"} | {"_experience":{"aaid":{"id":"31892EE100007BF3-215FE00000000001","namespace":{"code":"AAID"},"primary":true}}} | {"browserDetails":{"acceptLanguage":"en-US","cookiesEnabled":false,"javaEnabled":false,"javaScriptEnabled":true,"javaScriptVersion":"1.5","userAgent":"Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_1 like Mac OS X; ja-jp) AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5 Mobile/8B117 Safari/6531.22.7","viewportHeight":768,"viewportWidth":556},"domain":"ntt.net","ipV4":"219.165.108.145"} | {"AAID":[{"id":"31892EE100007BF3-215FE00000000001","primary":true}]} | {"geo":{"_schema":{"latitude":34.989999999999995,"longitude":138.42},"city":"shizuoka","countryCode":"JP","dmaID":392005,"postalCode":"420-0812","stateProvince":"22"},"localTimezoneOffset":-240} | {"dataCenterLocation":"UT1"} | {"webPageDetails":{"isHomePage":false,"name":"Home - JJEsquire","pageViews":{"value":1.0}},"webReferrer":{"type":"typed_bookmarked"}}                                        |
(2 rows)

Resolver instantánea de reserva ante un error resolve-fallback-snapshot-on-failure

La opción resolve_fallback_snapshot_on_failure se usa para resolver el problema de un identificador de instantánea caducado. Los metadatos de la instantánea caducan al cabo de dos días y una instantánea caducada puede invalidar la lógica de un script. Esto puede suponer un problema al utilizar bloques anónimos.

Establezca la opción resolve_fallback_snapshot_on_failure en true para anular una instantánea con un ID de instantánea anterior.

SET resolve_fallback_snapshot_on_failure=true;

La siguiente línea de código anula @from_snapshot_id con los primeros snapshot_id disponibles de los metadatos.

$$ BEGIN
    SET resolve_fallback_snapshot_on_failure=true;
    SET @from_snapshot_id = SELECT coalesce(last_snapshot_id, 'HEAD') FROM checkpoint_log a JOIN
                            (SELECT MAX(process_timestamp)process_timestamp FROM checkpoint_log
                                WHERE process_name = 'DIM_TABLE_ABC' AND process_status = 'SUCCESSFUL' )b
                                on a.process_timestamp=b.process_timestamp;
    SET @to_snapshot_id = SELECT snapshot_id FROM (SELECT history_meta('DIM_TABLE_ABC')) WHERE  is_current = true;
    SET @last_updated_timestamp= SELECT CURRENT_TIMESTAMP;
    INSERT INTO DIM_TABLE_ABC_Incremental
     SELECT  *  FROM DIM_TABLE_ABC SNAPSHOT BETWEEN @from_snapshot_id AND @to_snapshot_id WHERE NOT EXISTS (SELECT _id FROM DIM_TABLE_ABC_Incremental a WHERE _id=a._id);

Insert Into
   checkpoint_log
   SELECT
       'DIM_TABLE_ABC' process_name,
       'SUCCESSFUL' process_status,
      cast( @to_snapshot_id AS string) last_snapshot_id,
      cast( @last_updated_timestamp AS TIMESTAMP) process_timestamp;
EXCEPTION
  WHEN OTHER THEN
    SELECT 'ERROR';
END
$$;

Organización de recursos de datos

Es importante organizar lógicamente los recursos de datos dentro del lago de datos de Adobe Experience Platform a medida que crezcan. El servicio de consultas amplía las construcciones SQL que permiten agrupar lógicamente los recursos de datos en una zona protegida. Este método de organización permite compartir recursos de datos entre esquemas sin necesidad de moverlos físicamente.

Se admiten las siguientes construcciones SQL con sintaxis SQL estándar para organizar lógicamente los datos.

CREATE DATABASE dg1;
CREATE SCHEMA dg1.schema1;
CREATE table t1 ...;
CREATE view v1 ...;
ALTER TABLE t1 ADD PRIMARY KEY (c1) NOT ENFORCED;
ALTER TABLE t2 ADD FOREIGN KEY (c1) REFERENCES t1(c1) NOT ENFORCED;

Consulte la guía organización lógica de recursos de datos para obtener una explicación más detallada sobre las prácticas recomendadas del servicio de consultas.

La tabla existe

El comando SQL table_exists se usa para confirmar si existe actualmente una tabla en el sistema. El comando devuelve un valor booleano: true si la tabla existe, y false si la tabla existe no.

Al validar si existe una tabla antes de ejecutar las instrucciones, la característica table_exists simplifica el proceso de escribir un bloque anónimo para cubrir los casos de uso de CREATE y INSERT INTO.

La siguiente sintaxis define el comando table_exists:

$$
BEGIN

#Set mytableexist to true if the table already exists.
SET @mytableexist = SELECT table_exists('target_table_name');

#Create the table if it does not already exist (this is a one time operation).
CREATE TABLE IF NOT EXISTS target_table_name AS
  SELECT *
  FROM   profile_dim_date limit 10;

#Insert data only if the table already exists. Check if @mytableexist = 'true'
 INSERT INTO target_table_name           (
                     select *
                     from   profile_dim_date
                     WHERE  @mytableexist = 'true' limit 20
              ) ;
EXCEPTION
WHEN other THEN SELECT 'ERROR';

END $$;

En línea inline

La función inline separa los elementos de una matriz de estructuras y genera los valores en una tabla. Solo se puede colocar en la lista SELECT o en un LATERAL VIEW.

La función inline no se puede colocar en una lista de selección donde hay otras funciones de generador.

De forma predeterminada, las columnas producidas se denominan "col1", "col2", etc. Si la expresión es NULL, no se produce ninguna fila.

TIP
Se puede cambiar el nombre de las columnas con el comando RENAME.

Ejemplo

> SELECT inline(array(struct(1, 'a'), struct(2, 'b'))), 'Spark SQL';

El ejemplo devuelve lo siguiente:

1  a Spark SQL
2  b Spark SQL

En este segundo ejemplo se muestra más el concepto y la aplicación de la función inline. El modelo de datos del ejemplo se ilustra en la siguiente imagen.

Un diagrama de esquema para productListItems.

Ejemplo

select inline(productListItems) from source_dataset limit 10;

Los valores tomados de source_dataset se utilizan para rellenar la tabla de destino.

SKU
_experience
cantidad
priceTotal
product-id-1
("("("(A,pass,B,NULL)")")
5
10,5
product-id-5
("("("(A, pass, B,NULL)")")
product-id-2
("("("(AF, C, D,NULL)")")
6
40
product-id-4
("("("(BM, pass, NA,NULL)")")
3
12

Spark comandos SQL

La subsección siguiente cubre los comandos SQL de Spark compatibles con el servicio de consultas.

ESTABLECER

El comando SET establece una propiedad y devuelve el valor de una propiedad existente o enumera todas las propiedades existentes. Si se proporciona un valor para una clave de propiedad existente, se anula el valor antiguo.

SET property_key = property_value
Parámetros
Descripción
property_key
El nombre de la propiedad que desea enumerar o modificar.
property_value
El valor como el que desea que se establezca la propiedad.

Para devolver el valor de cualquier configuración, use SET [property key] sin property_value.

PostgreSQL comandos

Las subsecciones siguientes cubren los comandos PostgreSQL admitidos por el servicio de consultas.

ANALIZAR TABLA analyze-table

El comando ANALYZE TABLE realiza un análisis de distribución y cálculos estadísticos para la tabla o tablas con nombre. El uso de ANALYZE TABLE varía en función de si los conjuntos de datos están almacenados en el almacén acelerado o en el lago de datos. Consulte sus secciones respectivas para obtener más información sobre su uso.

ESTADÍSTICAS DE CÁLCULO en el almacén acelerado compute-statistics-accelerated-store

El comando ANALYZE TABLE calcula las estadísticas de una tabla en el almacén acelerado. Las estadísticas se calculan en consultas CTAS o ITAS ejecutadas para una tabla determinada del almacén acelerado.

Ejemplo

ANALYZE TABLE <original_table_name>

A continuación se muestra una lista de cálculos estadísticos disponibles después de usar el comando ANALYZE TABLE:-

Valores calculados
Descripción
field
Nombre de la columna de una tabla.
data-type
El tipo de datos aceptable para cada columna.
count
Número de filas que contienen un valor no nulo para este campo.
distinct-count
El número de valores únicos o distintos para este campo.
missing
Número de filas que tienen un valor nulo para este campo.
max
El valor máximo de la tabla analizada.
min
El valor mínimo de la tabla analizada.
mean
El valor promedio de la tabla analizada.
stdev
La desviación estándar de la tabla analizada.

ESTADÍSTICAS DE CÁLCULO en el lago de datos compute-statistics-data-lake

Ahora puede calcular estadísticas de nivel de columna en conjuntos de datos de Azure Data Lake Storage (ADLS) con el comando SQL COMPUTE STATISTICS. Calcular las estadísticas de columna en todo el conjunto de datos, un subconjunto de un conjunto de datos, todas las columnas o un subconjunto de columnas.

COMPUTE STATISTICS extiende el comando ANALYZE TABLE. Sin embargo, los comandos COMPUTE STATISTICS, FILTERCONTEXT y FOR COLUMNS no son compatibles con las tablas de almacenamiento acelerado. Actualmente, estas extensiones para el comando ANALYZE TABLE solo son compatibles con las tablas ADLS.

Ejemplo

ANALYZE TABLE tableName FILTERCONTEXT (timestamp >= to_timestamp('2023-04-01 00:00:00') and timestamp <= to_timestamp('2023-04-05 00:00:00')) COMPUTE STATISTICS  FOR COLUMNS (commerce, id, timestamp);

El comando FILTER CONTEXT calcula las estadísticas de un subconjunto del conjunto de datos en función de la condición de filtro proporcionada. El comando FOR COLUMNS identifica columnas específicas para su análisis.

NOTE
Statistics ID y las estadísticas generadas solo son válidas para cada sesión y no se puede tener acceso a ellas en las distintas sesiones de PSQL.

Limitaciones:
  • La generación de estadísticas no es compatible con los tipos de datos de matriz o asignación
  • Las estadísticas calculadas no persisten entre sesiones.
  • skip_stats_for_complex_datatypes
SET skip_stats_for_complex_datatypes = false

La salida de la consola aparece como se ve a continuación.

|     Statistics ID      |
| ---------------------- |
| adc_geometric_stats_1  |
(1 row)

Puede consultar las estadísticas calculadas directamente haciendo referencia a Statistics ID. Use Statistics ID o el nombre de alias como se muestra en la instrucción de ejemplo siguiente para ver el resultado completo. Para obtener más información acerca de esta característica, consulte la documentación del nombre de alias.

-- This statement gets the statistics generated for `alias adc_geometric_stats_1`.
SELECT * FROM adc_geometric_stats_1;

Utilice el comando SHOW STATISTICS para mostrar los metadatos de todas las estadísticas temporales generadas en la sesión. Este comando puede ayudarle a refinar el ámbito del análisis estadístico.

SHOW STATISTICS;

A continuación se muestra un ejemplo de salida de SHOW STATISTICS.

      statsId         |   tableName   | columnSet |         filterContext       |      timestamp
----------------------+---------------+-----------+-----------------------------+--------------------
adc_geometric_stats_1 | adc_geometric |   (age)   |                             | 25/06/2023 09:22:26
demo_table_stats_1    |  demo_table   |    (*)    |       ((age > 25))          | 25/06/2023 12:50:26
age_stats             | castedtitanic |   (age)   | ((age > 25) AND (age < 40)) | 25/06/2023 09:22:26

Consulte la documentación de estadísticas de conjuntos de datos para obtener más información.

TABLESAMPLE tablesample

El servicio de consulta de Adobe Experience Platform proporciona conjuntos de datos de ejemplo como parte de sus capacidades aproximadas de procesamiento de consultas.

Las muestras de conjuntos de datos se utilizan mejor cuando no necesita una respuesta exacta para una operación de agregado sobre un conjunto de datos. Para realizar consultas exploratorias más eficientes en conjuntos de datos grandes emitiendo una consulta aproximada para devolver una respuesta aproximada, use la característica TABLESAMPLE.

Los conjuntos de datos de ejemplo se crean con muestras aleatorias uniformes de conjuntos de datos de Azure Data Lake Storage (ADLS) existentes, que utilizan solo un porcentaje de registros del original. La característica de ejemplo del conjunto de datos amplía el comando ANALYZE TABLE con los comandos SQL TABLESAMPLE y SAMPLERATE.

En el ejemplo siguiente, la línea uno muestra cómo calcular una muestra del 5 % de la tabla. La línea dos muestra cómo calcular una muestra del 5 % a partir de una vista filtrada de los datos de la tabla.

Ejemplo

ANALYZE TABLE tableName TABLESAMPLE SAMPLERATE 5;
ANALYZE TABLE tableName FILTERCONTEXT (timestamp >= to_timestamp('2023-01-01')) TABLESAMPLE SAMPLERATE 5:

Consulte la documentación de ejemplos de conjuntos de datos para obtener más información.

COMENZAR

El comando BEGIN, o alternativamente el comando BEGIN WORK o BEGIN TRANSACTION, inicia un bloque de transacciones. Cualquier instrucción que se introduzca después del comando begin se ejecutará en una sola transacción hasta que se proporcione un comando COMMIT o ROLLBACK explícito. Este comando es el mismo que START TRANSACTION.

BEGIN
BEGIN WORK
BEGIN TRANSACTION

CERRAR

El comando CLOSE libera los recursos asociados con un cursor abierto. Una vez cerrado el cursor, no se permiten operaciones posteriores. Se debe cerrar un cursor cuando ya no sea necesario.

CLOSE name
CLOSE ALL

Si se usa CLOSE name, name representa el nombre de un cursor abierto que debe cerrarse. Si se usa CLOSE ALL, se cierran todos los cursores abiertos.

DESASIGNAR

Para anular la asignación de una instrucción SQL preparada previamente, utilice el comando DEALLOCATE. Si no desasigna explícitamente una instrucción preparada, se desasigna cuando finaliza la sesión. Encontrará más información sobre las instrucciones preparadas en la sección PREPARE command.

DEALLOCATE name
DEALLOCATE ALL

Si se usa DEALLOCATE name, name representa el nombre de la instrucción preparada que se debe desasignar. Si se usa DEALLOCATE ALL, se desasignan todas las instrucciones preparadas.

DECLARAR

El comando DECLARE permite a un usuario crear un cursor, que se puede utilizar para recuperar un pequeño número de filas de una consulta mayor. Una vez creado el cursor, se recuperan las filas mediante FETCH.

DECLARE name CURSOR FOR query
Parámetros
Descripción
name
Nombre del cursor que se va a crear.
query
Un comando SELECT o VALUES que proporciona las filas que devolverá el cursor.

EJECUTAR

El comando EXECUTE se usa para ejecutar una instrucción preparada previamente. Dado que las instrucciones preparadas sólo existen durante una sesión, la instrucción preparada debe haberse creado mediante una instrucción PREPARE ejecutada anteriormente en la sesión actual. Puede encontrar más información sobre el uso de instrucciones preparadas en la sección PREPARE comando.

Si la instrucción PREPARE que creó la instrucción especificó algunos parámetros, se debe pasar un conjunto de parámetros compatible a la instrucción EXECUTE. Si no se pasan estos parámetros, se generará un error.

EXECUTE name [ ( parameter ) ]
Parámetros
Descripción
name
Nombre de la instrucción preparada que se va a ejecutar.
parameter
El valor real de un parámetro en la instrucción preparada. Debe ser una expresión que genere un valor compatible con el tipo de datos de este parámetro, tal como se determinó cuando se creó la instrucción preparada. Si hay varios parámetros para la instrucción preparada, se separan con comas.

EXPLICAR

El comando EXPLAIN muestra el plan de ejecución de la instrucción proporcionada. El plan de ejecución muestra cómo se analizarán las tablas a las que hace referencia la sentencia. Si se hace referencia a varias tablas, se muestra qué algoritmos de combinación se utilizan para reunir las filas necesarias de cada tabla de entrada.

EXPLAIN statement

Para definir el formato de la respuesta, utilice la palabra clave FORMAT con el comando EXPLAIN.

EXPLAIN FORMAT { TEXT | JSON } statement
Parámetros
Descripción
FORMAT
Utilice el comando FORMAT para especificar el formato de salida. Las opciones disponibles son TEXT o JSON. La salida no textual contiene la misma información que el formato de salida de texto, pero es más fácil de analizar para los programas. El valor predeterminado de este parámetro es TEXT.
statement
Cualquier instrucción SELECT, INSERT, UPDATE, DELETE, VALUES, EXECUTE, DECLARE, CREATE TABLE AS o CREATE MATERIALIZED VIEW AS, cuyo plan de ejecución desee ver.
IMPORTANT
Cualquier resultado que devuelva una instrucción SELECT se descarta cuando se ejecuta con la palabra clave EXPLAIN. Otros efectos secundarios de la declaración ocurren como de costumbre.

Ejemplo

El ejemplo siguiente muestra el plan para una consulta simple en una tabla con una sola columna integer y filas 10000:

EXPLAIN SELECT * FROM foo;
                       QUERY PLAN
---------------------------------------------------------
 Seq Scan on foo (dataSetId = "6307eb92f90c501e072f8457", dataSetName = "foo") [0,1000000242,6973776840203d3d,6e616c58206c6153,6c6c6f430a3d4d20,74696d674c746365]
(1 row)

BUSCAR

El comando FETCH recupera filas utilizando un cursor creado anteriormente.

FETCH num_of_rows [ IN | FROM ] cursor_name
Parámetros
Descripción
num_of_rows
Número de filas que se van a recuperar.
cursor_name
El nombre del cursor desde el que recupera información.

PREPARAR prepare

El comando PREPARE le permite crear una instrucción preparada. Una instrucción preparada es un objeto del lado del servidor que se puede utilizar para crear plantillas de instrucciones SQL similares.

Las instrucciones preparadas pueden tomar parámetros, que son valores que se sustituyen en la instrucción cuando se ejecuta. Se hace referencia a los parámetros por posición, utilizando $1, $2, etc., al utilizar instrucciones preparadas.

De forma opcional, puede especificar una lista de tipos de datos de parámetros. Si el tipo de datos de un parámetro no aparece en la lista, el tipo se puede inferir del contexto.

PREPARE name [ ( data_type [, ...] ) ] AS SELECT
Parámetros
Descripción
name
Nombre de la instrucción preparada.
data_type
Los tipos de datos de los parámetros de la instrucción preparada. Si el tipo de datos de un parámetro no aparece en la lista, el tipo se puede inferir del contexto. Si debe agregar varios tipos de datos, puede agregarlos en una lista separada por comas.

REVERSIÓN

El comando ROLLBACK deshace la transacción actual y descarta todas las actualizaciones realizadas por la transacción.

ROLLBACK
ROLLBACK WORK

SELECCIONAR EN

El comando SELECT INTO crea una nueva tabla y la rellena con datos calculados por una consulta. Los datos no se devuelven al cliente, como sucede con un comando SELECT normal. Las columnas de la nueva tabla tienen los nombres y tipos de datos asociados con las columnas de salida del comando SELECT.

[ WITH [ RECURSIVE ] with_query [, ...] ]
SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]
    * | expression [ [ AS ] output_name ] [, ...]
    INTO [ TEMPORARY | TEMP | UNLOGGED ] [ TABLE ] new_table
    [ FROM from_item [, ...] ]
    [ WHERE condition ]
    [ GROUP BY expression [, ...] ]
    [ HAVING condition [, ...] ]
    [ WINDOW window_name AS ( window_definition ) [, ...] ]
    [ { UNION | INTERSECT | EXCEPT } [ ALL | DISTINCT ] select ]
    [ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]
    [ LIMIT { count | ALL } ]
    [ OFFSET start [ ROW | ROWS ] ]
    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ]
    [ FOR { UPDATE | SHARE } [ OF table_name [, ...] ] [ NOWAIT ] [...] ]

Encontrará más información sobre los parámetros de consulta SELECT estándar en la sección de consulta SELECT. En esta sección sólo se enumeran los parámetros exclusivos del comando SELECT INTO.

Parámetros
Descripción
TEMPORARY o TEMP
Un parámetro opcional. Si se especifica el parámetro, la tabla creada es una tabla temporal.
UNLOGGED
Un parámetro opcional. Si se especifica el parámetro, la tabla creada es una tabla sin registrar. Encontrará más información sobre tablas sin registrar en la PostgreSQL documentación.
new_table
Nombre de la tabla que se va a crear.

Ejemplo

La siguiente consulta crea una nueva tabla films_recent que consiste únicamente en entradas recientes de la tabla films:

SELECT * INTO films_recent FROM films WHERE date_prod >= '2002-01-01';

MOSTRAR

El comando SHOW muestra la configuración actual de los parámetros de tiempo de ejecución. Estas variables se pueden establecer mediante la instrucción SET, editando el archivo de configuración postgresql.conf, a través de la variable de entorno PGOPTIONS (cuando se usa libpq o una aplicación basada en libpq) o a través de indicadores de línea de comandos al iniciar el servidor Postgres.

SHOW name
SHOW ALL
Parámetros
Descripción
name
El nombre del parámetro de tiempo de ejecución del que desea obtener información. Entre los posibles valores del parámetro de tiempo de ejecución se incluyen los siguientes:
SERVER_VERSION: Este parámetro muestra el número de versión del servidor.
SERVER_ENCODING: este parámetro muestra la codificación del conjunto de caracteres del servidor.
LC_COLLATE: este parámetro muestra la configuración regional de la base de datos para intercalación (orden de texto).
LC_CTYPE: este parámetro muestra la configuración regional de la base de datos para la clasificación de caracteres.
IS_SUPERUSER: este parámetro muestra si el rol actual tiene privilegios de superusuario.
ALL
Mostrar los valores de todos los parámetros de configuración con descripciones.

Ejemplo

La siguiente consulta muestra la configuración actual del parámetro DateStyle.

SHOW DateStyle;
 DateStyle
-----------
 ISO, MDY
(1 row)

COPIAR

El comando COPY duplica el resultado de cualquier consulta SELECT en una ubicación especificada. El usuario debe tener acceso a esta ubicación para que este comando se ejecute correctamente.

COPY query
    TO '%scratch_space%/folder_location'
    [  WITH FORMAT 'format_name']
Parámetros
Descripción
query
La consulta que desea copiar.
format_name
El formato en el que desea copiar la consulta. format_name puede ser parquet, csv o json. De manera predeterminada, el valor es parquet.
NOTE
La ruta de salida completa es adl://<ADLS_URI>/users/<USER_ID>/acp_foundation_queryService/folder_location/<QUERY_ID>

MODIFICAR TABLA alter-table

El comando ALTER TABLE le permite agregar o soltar restricciones de clave principal o externa y agregar columnas a la tabla.

AGREGAR o SOLTAR RESTRICCIÓN

Las siguientes consultas SQL muestran ejemplos de cómo agregar o quitar restricciones a una tabla. Las restricciones de clave principal y clave externa se pueden agregar a varias columnas con valores separados por comas. Puede crear claves compuestas pasando dos o más valores de nombre de columna, tal como se ve en los ejemplos siguientes.

Definir claves principales o compuestas

ALTER TABLE table_name ADD CONSTRAINT PRIMARY KEY ( column_name ) NAMESPACE namespace

ALTER TABLE table_name ADD CONSTRAINT PRIMARY KEY ( column_name1, column_name2 ) NAMESPACE namespace

Defina una relación entre tablas basada en una o más claves

ALTER TABLE table_name ADD CONSTRAINT FOREIGN KEY ( column_name ) REFERENCES referenced_table_name ( primary_column_name )

ALTER TABLE table_name ADD CONSTRAINT FOREIGN KEY ( column_name1, column_name2 ) REFERENCES referenced_table_name ( primary_column_name1, primary_column_name2 )

Definir una columna de identidad

ALTER TABLE table_name ADD CONSTRAINT PRIMARY IDENTITY ( column_name ) NAMESPACE namespace

ALTER TABLE table_name ADD CONSTRAINT IDENTITY ( column_name ) NAMESPACE namespace

Quitar una restricción, relación o identidad

ALTER TABLE table_name DROP CONSTRAINT PRIMARY KEY ( column_name )

ALTER TABLE table_name DROP CONSTRAINT PRIMARY KEY ( column_name1, column_name2 )

ALTER TABLE table_name DROP CONSTRAINT FOREIGN KEY ( column_name )

ALTER TABLE table_name DROP CONSTRAINT FOREIGN KEY ( column_name1, column_name2 )

ALTER TABLE table_name DROP CONSTRAINT PRIMARY IDENTITY ( column_name )

ALTER TABLE table_name DROP CONSTRAINT IDENTITY ( column_name )
Parámetros
Descripción
table_name
El nombre de la tabla que está editando.
column_name
Nombre de la columna a la que está agregando una restricción.
referenced_table_name
El nombre de la tabla a la que hace referencia la clave externa.
primary_column_name
Nombre de la columna a la que hace referencia la clave externa.
NOTE
El esquema de tabla debe ser único y no compartido entre varias tablas. Además, el área de nombres es obligatoria para la clave principal, la identidad principal y las restricciones de identidad.

Adición o eliminación de identidades principales y secundarias

Para agregar o eliminar restricciones para columnas de la tabla de identidad principal y secundaria, use el comando ALTER TABLE.

En los ejemplos siguientes se agregan una identidad principal y una identidad secundaria mediante la adición de restricciones.

ALTER TABLE t1 ADD CONSTRAINT PRIMARY IDENTITY (id) NAMESPACE 'IDFA';
ALTER TABLE t1 ADD CONSTRAINT IDENTITY(id) NAMESPACE 'IDFA';

Las identidades también se pueden eliminar soltando restricciones, como se ve en el ejemplo siguiente.

ALTER TABLE t1 DROP CONSTRAINT PRIMARY IDENTITY (c1) ;
ALTER TABLE t1 DROP CONSTRAINT IDENTITY (c1) ;

Para obtener información más detallada, consulte el documento sobre configuración de identidades en conjuntos de datos ad hoc.

AÑADIR COLUMNA

Las siguientes consultas SQL muestran ejemplos de adición de columnas a una tabla.

ALTER TABLE table_name ADD COLUMN column_name data_type

ALTER TABLE table_name ADD COLUMN column_name_1 data_type1, column_name_2 data_type2
Tipos de datos admitidos

En la tabla siguiente se enumeran los tipos de datos aceptados para agregar columnas a una tabla con Postgres SQL, XDM y Accelerated Database Recovery (ADR) en Azure SQL.

cliente PSQL
XDM
ADR
Descripción
1
bigint
int8
bigint
Tipo de datos numéricos utilizados para almacenar enteros grandes comprendidos entre -9.223.372.036.854.775.807 y 9.223.372.036.854.775.807 en 8 bytes.
2
integer
int4
integer
Tipo de datos numérico utilizado para almacenar enteros entre -2.147.483.648 y 2.147.483.647 en 4 bytes.
3
smallint
int2
smallint
Tipo de datos numéricos utilizados para almacenar enteros entre -32.768 y 215-1 32.767 en 2 bytes.
4
tinyint
int1
tinyint
Tipo de datos numérico utilizado para almacenar enteros de 0 a 255 en 1 byte.
5
varchar(len)
string
varchar(len)
Un tipo de datos de caracteres de tamaño variable. Se recomienda utilizar varchar cuando el tamaño de las entradas de datos de la columna varía considerablemente.
6
double
float8
double precision
FLOAT8 y FLOAT son sinónimos válidos para DOUBLE PRECISION. double precision es un tipo de datos de punto flotante. Los valores de punto flotante se almacenan en 8 bytes.
7
double precision
float8
double precision
FLOAT8 es un sinónimo válido de double precision.double precision es un tipo de datos de punto flotante. Los valores de punto flotante se almacenan en 8 bytes.
8
date
date
date
Los tipos de datos date son valores de fecha de calendario almacenados de 4 bytes sin información de marca de tiempo. El rango de fechas válidas es del 01-01-0001 al 12-31-9999.
9
datetime
datetime
datetime
Tipo de datos que se utiliza para almacenar un instante en el tiempo expresado como fecha y hora del día en el calendario. datetime incluye los calificadores de: año, mes, día, hora, segundo y fracción. Una declaración datetime puede incluir cualquier subconjunto de estas unidades de tiempo que se unen en esa secuencia, o incluso comprender una sola unidad de tiempo.
10
char(len)
string
char(len)
La palabra clave char(len) se usa para indicar que el elemento es un carácter de longitud fija.

AÑADIR ESQUEMA

La siguiente consulta SQL muestra un ejemplo de adición de una tabla a una base de datos o esquema.

ALTER TABLE table_name ADD SCHEMA database_name.schema_name
NOTE
Las tablas y vistas de ADLS no se pueden añadir a bases de datos o esquemas DWH.

QUITAR ESQUEMA

La siguiente consulta SQL muestra un ejemplo de eliminación de una tabla de una base de datos o esquema.

ALTER TABLE table_name REMOVE SCHEMA database_name.schema_name
NOTE
Las tablas y vistas de DWH no se pueden eliminar de los esquemas o bases de datos de DWH vinculados físicamente.

Parámetros

Parámetros
Descripción
table_name
El nombre de la tabla que está editando.
column_name
Nombre de la columna que desea agregar.
data_type
El tipo de datos de la columna que desea agregar. Los tipos de datos admitidos son los siguientes: bigint, char, string, date, datetime, double, double precision, integer, smallint, tinyint, varchar.

MOSTRAR CLAVES PRIMARIAS

El comando SHOW PRIMARY KEYS enumera todas las restricciones de clave principal de la base de datos determinada.

SHOW PRIMARY KEYS
    tableName | columnName    | datatype | namespace
------------------+----------------------+----------+-----------
 table_name_1 | column_name1  | text     | "ECID"
 table_name_2 | column_name2  | text     | "AAID"

MOSTRAR CLAVES EXTERNAS

El comando SHOW FOREIGN KEYS enumera todas las restricciones de clave externa de la base de datos determinada.

SHOW FOREIGN KEYS
    tableName   |     columnName      | datatype | referencedTableName | referencedColumnName | namespace
------------------+---------------------+----------+---------------------+----------------------+-----------
 table_name_1   | column_name1        | text     | table_name_3        | column_name3         |  "ECID"
 table_name_2   | column_name2        | text     | table_name_4        | column_name4         |  "AAID"

MOSTRAR GRUPOS DE DATOS

El comando SHOW DATAGROUPS devuelve una tabla de todas las bases de datos asociadas. Para cada base de datos, la tabla incluye el esquema, el tipo de grupo, el tipo secundario, el nombre secundario y el ID secundario.

SHOW DATAGROUPS
   Database   |      Schema       | GroupType |      ChildType       |                     ChildName                       |               ChildId
  -------------+-------------------+-----------+----------------------+----------------------------------------------------+--------------------------------------
   adls_db     | adls_scheema      | ADLS      | Data Lake Table      | adls_table1                                        | 6149ff6e45cfa318a76ba6d3
   adls_db     | adls_scheema      | ADLS      | Accelerated Store | _table_demo1                                       | 22df56cf-0790-4034-bd54-d26d55ca6b21
   adls_db     | adls_scheema      | ADLS      | View                 | adls_view1                                         | c2e7ddac-d41c-40c5-a7dd-acd41c80c5e9
   adls_db     | adls_scheema      | ADLS      | View                 | adls_view4                                         | b280c564-df7e-405f-80c5-64df7ea05fc3

MOSTRAR GRUPOS DE DATOS PARA LA tabla

El comando SHOW DATAGROUPS FOR 'table_name' devuelve una tabla de todas las bases de datos asociadas que contienen el parámetro como elemento secundario. Para cada base de datos, la tabla incluye el esquema, el tipo de grupo, el tipo secundario, el nombre secundario y el ID secundario.

SHOW DATAGROUPS FOR 'table_name'

Parámetros

  • table_name: nombre de la tabla para la que desea buscar bases de datos asociadas.
   Database   |      Schema       | GroupType |      ChildType       |                     ChildName                      |               ChildId
  -------------+-------------------+-----------+----------------------+----------------------------------------------------+--------------------------------------
   dwh_db_demo | schema2           | QSACCEL   | Accelerated Store | _table_demo2                                       | d270f704-0a65-4f0f-b3e6-cb535eb0c8ce
   dwh_db_demo | schema1           | QSACCEL   | Accelerated Store | _table_demo2                                       | d270f704-0a65-4f0f-b3e6-cb535eb0c8ce
   qsaccel     | profile_aggs      | QSACCEL   | Accelerated Store | _table_demo2                                       | d270f704-0a65-4f0f-b3e6-cb535eb0c8ce
recommendation-more-help
ccf2b369-4031-483f-af63-a93b5ae5e3fb