Punto final de perspectivas

NOTE
Data Science Workspace ya no se puede adquirir.
Esta documentación está destinada a clientes existentes con derechos previos a Data Science Espacio de trabajo.

Insights contienen métricas que se utilizan para capacitar a un científico de datos para evaluar y elegir modelos óptimos de ML mediante la visualización de métricas de evaluación relevantes.

Recuperar un lista de Insights

Puede recuperar un lista de Insights realizando una sola petición GET al punto final de perspectivas. Para filtrar los resultados, puede especificar parámetros de consulta en la ruta de solicitud. Para obtener una lista de las consultas disponibles, consulte la sección del apéndice sobre consulta parámetros para recurso recuperación.

Formato API

GET /insights

Solicitud

curl -X GET \
  https://platform.adobe.io/data/sensei/insights \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Respuesta

Una respuesta correcta devuelve una carga útil que incluye una lista de perspectivas y cada perspectiva tiene un identificador único ( id). Además, recibirá context, que contiene los identificadores únicos asociados con esa perspectiva en particular, y que siguen a los datos de eventos y métricas de Insights.

{
    "children": [
        {
            "id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
            "context": {
                "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
                "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
                "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
            },
            "events": {
                "name": "fit",
                "eventValues": {
                    "algorithm": null,
                    "ratio": "0.8"
                }
            },
            "metrics": [
                {
                    "name": "MAPE",
                    "value": "0.0111111111111",
                    "valueType": "double"
                }
            ],
            "created": "2019-01-01T00:00:00.000Z",
            "updated": "2019-01-02T00:00:00.000Z"
        },
        {
            "id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
            "context": {
                "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
                "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
                "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
            },
            "events": {
                "name": "fit",
                "eventValues": {
                    "algorithm": null,
                    "ratio": "0.8"
                }
            },
            "metrics": [
                {
                    "name": "MAPE",
                    "value": "0.0111111111111",
                    "valueType": "double"
                }
            ],
            "created": "2019-01-01T00:00:00.000Z",
            "updated": "2019-01-02T00:00:00.000Z"
            }
        ],
    "_page": {
        "count": 2
    }
}
Propiedad
Descripción
id
ID correspondiente al Insight.
experimentId
Un ID de Experimento válido.
experimentRunId
Un ID válido de Experimento ejecución.
modelId
Un ID de modelo válido.

Recuperar un Insight específico

Para buscar un conocimiento en particular, realice un petición GET y proporcione un documento válido {INSIGHT_ID} en la ruta de solicitud. Para ayudar a filtrar los resultados, puede especificar parámetros de consulta en la ruta de solicitud. Para obtener una lista de las consultas disponibles, consulte la sección del apéndice sobre consulta parámetros para recurso recuperación.

Formato de API

GET /insights/{INSIGHT_ID}
Parámetro
Descripción
{INSIGHT_ID}
El identificador único de un conocimiento Sensei.

Solicitud

curl -X GET \
  https://platform.adobe.io/data/sensei/insights/08b8d174-6b0d-4d7e-acd8-1c4c908e14b2 \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Respuesta

Una respuesta correcta devuelve una carga útil que incluye el identificador único de información (id). Además, recibirá context que contiene los identificadores únicos que están asociados con el conocimiento particular que sigue con los eventos de Insights y los datos de las métricas.

{
    "id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
    "context": {
        "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
        "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
        "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
    },
    "events": {
        "name": "fit",
        "eventValues": {
            "algorithm": null,
            "ratio": "0.8"
        }
    },
    "metrics": [
        {
            "name": "MAPE",
            "value": "0.0111111111111",
            "valueType": "double"
        }
    ],
    "created": "2019-01-01T00:00:00.000Z",
    "updated": "2019-01-02T00:00:00.000Z"
}
Propiedad
Descripción
id
El ID correspondiente a la perspectiva.
experimentId
ID de experimento válido.
experimentRunId
ID de ejecución de experimento válido.
modelId
ID de modelo válido.

Añadir una nueva perspectiva del modelo

Puede crear una nueva conocimiento modelo realizando una petición POST y una carga útil que proporcionen contexto, eventos y métricas para la nueva conocimiento modelo. No es necesario que el campo de contexto utilizado para crear un nuevo modelo conocimiento tenga asociados los servicios existentes, pero puede optar por crear el nuevo modelo conocimiento con los servicios existentes proporcionando uno o varios de los ID correspondientes:

"context": {
    "clientId": "f1ab3164-e688-433d-99ef-077b2be84731",
    "notebookId": "T4ab3164-e658-443d-97ef-022b2be84999",
    "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
    "engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
    "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71",
    "dataSetId": "5ee3cd7f2d34011913c56941"
  }

Formato API

POST /insights

Solicitud

curl -X POST \
  https://platform.adobe.io/data/sensei/insights \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'
    -H `Content-Type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json`
    -d {
    "context": {
        "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
        "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
        "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
    },
    "events": {
        "name": "fit2",
        "eventValues": {
            "algorithm": null,
            "ratio": "0.99"
        }
    },
    "metrics": [
        {
            "name": "MAPE2",
            "value": "0.11111111111",
            "valueType": "double"
        }
    ],
    "created": "2019-01-01T00:00:00.000Z",
    "updated": "2019-01-02T00:00:00.000Z"
}

Respuesta

Una respuesta correcta devolverá una carga útil que tiene uno {INSIGHT_ID} y cualquiera de los parámetros proporcionados en la solicitud inicial.

{
    "id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
    "context": {
        "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
        "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
        "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
    },
    "events": {
        "name": "fit2",
        "eventValues": {
            "algorithm": null,
            "ratio": "0.99"
        }
    },
    "metrics": [
        {
            "name": "MAPE2",
            "value": "0.11111111111",
            "valueType": "double"
        }
    ],
    "created": "2019-01-01T00:00:00.000Z",
    "updated": "2019-01-02T00:00:00.000Z"
}
Propiedad
Descripción
insightId
El ID único que se crea para esta perspectiva particular cuando se realiza una solicitud de POST correcta.

Recuperación de una lista de métricas predeterminadas para algoritmos

Puede recuperar una lista de todas las métricas predeterminadas y del algoritmo realizando una única solicitud de GET al extremo de las métricas. Para consultar una métrica en particular, realice una solicitud de GET y proporcione un {ALGORITHM} válido en la ruta de solicitud.

Formato API

GET /insights/metrics
GET /insights/metrics?algorithm={ALGORITHM}
Parámetro
Descripción
{ALGORITHM}
El identificador del tipo de algoritmo.

Solicitud

La siguiente solicitud contiene un consulta y recupera un Métrica específico mediante el identificador de algoritmo {ALGORITHM}

curl -X GET \
  'https://platform.adobe.io/data/sensei/insights/metrics?algorithm={ALGORITHM}' \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Respuesta

Una respuesta correcta devuelve una carga útil que incluye el algorithm identificador único y una matriz de métricas predeterminadas.

{
    "children": [
        {
            "algorithm": "15c53796-bd6b-4e09-b51d-7296aa20af71",
            "defaultMetrics": [
                "f-score",
                "auroc",
                "roc",
                "precision",
                "recall",
                "accuracy",
                "confusion matrix"
            ]
        }
    ]
}
recommendation-more-help
cc79fe26-64da-411e-a6b9-5b650f53e4e9