Punto final de perspectivas
Insights contienen métricas que se utilizan para capacitar a un científico de datos para evaluar y elegir modelos óptimos de ML mediante la visualización de métricas de evaluación relevantes.
Recuperar un lista de Insights
Puede recuperar un lista de Insights realizando una sola petición GET al punto final de perspectivas. Para filtrar los resultados, puede especificar parámetros de consulta en la ruta de solicitud. Para obtener una lista de las consultas disponibles, consulte la sección del apéndice sobre consulta parámetros para recurso recuperación.
Formato API
GET /insights
Solicitud
curl -X GET \
https://platform.adobe.io/data/sensei/insights \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Respuesta
Una respuesta correcta devuelve una carga útil que incluye una lista de perspectivas y cada perspectiva tiene un identificador único ( id
). Además, recibirá context
, que contiene los identificadores únicos asociados con esa perspectiva en particular, y que siguen a los datos de eventos y métricas de Insights.
{
"children": [
{
"id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
"context": {
"experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
"modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
},
"events": {
"name": "fit",
"eventValues": {
"algorithm": null,
"ratio": "0.8"
}
},
"metrics": [
{
"name": "MAPE",
"value": "0.0111111111111",
"valueType": "double"
}
],
"created": "2019-01-01T00:00:00.000Z",
"updated": "2019-01-02T00:00:00.000Z"
},
{
"id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
"context": {
"experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
"modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
},
"events": {
"name": "fit",
"eventValues": {
"algorithm": null,
"ratio": "0.8"
}
},
"metrics": [
{
"name": "MAPE",
"value": "0.0111111111111",
"valueType": "double"
}
],
"created": "2019-01-01T00:00:00.000Z",
"updated": "2019-01-02T00:00:00.000Z"
}
],
"_page": {
"count": 2
}
}
id
experimentId
experimentRunId
modelId
Recuperar un Insight específico
Para buscar un conocimiento en particular, realice un petición GET y proporcione un documento válido {INSIGHT_ID}
en la ruta de solicitud. Para ayudar a filtrar los resultados, puede especificar parámetros de consulta en la ruta de solicitud. Para obtener una lista de las consultas disponibles, consulte la sección del apéndice sobre consulta parámetros para recurso recuperación.
Formato de API
GET /insights/{INSIGHT_ID}
{INSIGHT_ID}
Solicitud
curl -X GET \
https://platform.adobe.io/data/sensei/insights/08b8d174-6b0d-4d7e-acd8-1c4c908e14b2 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Respuesta
Una respuesta correcta devuelve una carga útil que incluye el identificador único de información (id
). Además, recibirá context
que contiene los identificadores únicos que están asociados con el conocimiento particular que sigue con los eventos de Insights y los datos de las métricas.
{
"id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
"context": {
"experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
"modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
},
"events": {
"name": "fit",
"eventValues": {
"algorithm": null,
"ratio": "0.8"
}
},
"metrics": [
{
"name": "MAPE",
"value": "0.0111111111111",
"valueType": "double"
}
],
"created": "2019-01-01T00:00:00.000Z",
"updated": "2019-01-02T00:00:00.000Z"
}
id
experimentId
experimentRunId
modelId
Añadir una nueva perspectiva del modelo
Puede crear una nueva conocimiento modelo realizando una petición POST y una carga útil que proporcionen contexto, eventos y métricas para la nueva conocimiento modelo. No es necesario que el campo de contexto utilizado para crear un nuevo modelo conocimiento tenga asociados los servicios existentes, pero puede optar por crear el nuevo modelo conocimiento con los servicios existentes proporcionando uno o varios de los ID correspondientes:
"context": {
"clientId": "f1ab3164-e688-433d-99ef-077b2be84731",
"notebookId": "T4ab3164-e658-443d-97ef-022b2be84999",
"experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
"modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71",
"dataSetId": "5ee3cd7f2d34011913c56941"
}
Formato API
POST /insights
Solicitud
curl -X POST \
https://platform.adobe.io/data/sensei/insights \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
-H `Content-Type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json`
-d {
"context": {
"experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
"modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
},
"events": {
"name": "fit2",
"eventValues": {
"algorithm": null,
"ratio": "0.99"
}
},
"metrics": [
{
"name": "MAPE2",
"value": "0.11111111111",
"valueType": "double"
}
],
"created": "2019-01-01T00:00:00.000Z",
"updated": "2019-01-02T00:00:00.000Z"
}
Respuesta
Una respuesta correcta devolverá una carga útil que tiene uno {INSIGHT_ID}
y cualquiera de los parámetros proporcionados en la solicitud inicial.
{
"id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
"context": {
"experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
"experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
"modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
},
"events": {
"name": "fit2",
"eventValues": {
"algorithm": null,
"ratio": "0.99"
}
},
"metrics": [
{
"name": "MAPE2",
"value": "0.11111111111",
"valueType": "double"
}
],
"created": "2019-01-01T00:00:00.000Z",
"updated": "2019-01-02T00:00:00.000Z"
}
insightId
Recuperación de una lista de métricas predeterminadas para algoritmos
Puede recuperar una lista de todas las métricas predeterminadas y del algoritmo realizando una única solicitud de GET al extremo de las métricas. Para consultar una métrica en particular, realice una solicitud de GET y proporcione un {ALGORITHM}
válido en la ruta de solicitud.
Formato API
GET /insights/metrics
GET /insights/metrics?algorithm={ALGORITHM}
{ALGORITHM}
Solicitud
La siguiente solicitud contiene un consulta y recupera un Métrica específico mediante el identificador de algoritmo {ALGORITHM}
curl -X GET \
'https://platform.adobe.io/data/sensei/insights/metrics?algorithm={ALGORITHM}' \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Respuesta
Una respuesta correcta devuelve una carga útil que incluye el algorithm
identificador único y una matriz de métricas predeterminadas.
{
"children": [
{
"algorithm": "15c53796-bd6b-4e09-b51d-7296aa20af71",
"defaultMetrics": [
"f-score",
"auroc",
"roc",
"precision",
"recall",
"accuracy",
"confusion matrix"
]
}
]
}