PREMIUM Kriterien erstellen

Kriterien in Adobe Target Recommendations den Inhalt Ihrer Recommendations Aktivitäten. Erstellen Sie Kriterien zur Anzeige der Empfehlungen, die am besten zu Ihrer Aktivität passen. Diese Kriterien verwenden die Aktionen des Besuchers, um zu bestimmen, welche Inhalte oder Produkte angezeigt werden sollen.

In den folgenden Abschnitten wird beschrieben, wie Sie neue Kriterien erstellen.

Zugriff auf den Bildschirm "Neue Kriterien erstellen"

Sie haben viele Möglichkeiten, um auf den Bildschirm Neue Kriterien erstellen zu gelangen. Einige Bildschirmoptionen variieren je nachdem, wie Sie auf den Bildschirm gelangen.

  • Im Recommendations > Kriterien Bibliotheksbildschirm, klicken Sie auf Erstellen von Kriterien > Erstellen von Kriterien. Kriterien, die Sie hier erstellen, stehen automatisch für alle Recommendations-Aktivitäten zur Verfügung.
  • Wenn Sie eine Recommendations -Aktivität, die Visual Experience Composer (VEC), werden Sie sofort zur Kriterien auswählen angezeigt, nachdem Sie ein Element auf Ihrer Seite ausgewählt haben, und klicken Sie auf Ersetzen durch Recommendations, Recommendations vor einfügenoder Recommendations einfügen nach. Sie können dann ein verfügbares Kriterium auswählen oder auf Erstellen von Kriterien. Wenn Sie ein neues Kriterium erstellen, können Sie Ihre Kriterien speichern, um sie mit anderen zu verwenden Recommendations Aktivitäten. Weitere Informationen finden Sie unter Erstellen einer Recommendations-Aktivität.
  • Klicken Sie beim Bearbeiten einer RecommendationsAktivität in ein Feld für die Empfehlungsposition auf Ihrer Seite und wählen Sie Kriterien ändern. Im Kriterien auswählen Bildschirm, klicken Sie auf Erstellen von Kriterien. Sie können Ihre neuen Kriterien speichern, um Sie mit anderen Recommendations-Aktivitäten zu verwenden.

Die folgenden Schritte setzen voraus, dass Sie auf die Neue Kriterien erstellen mit der ersten Methode: die Recommendations > Kriterien Bibliotheksbildschirm.

  1. Klicken Recommendations > Kriterien.

  2. Klicken Erstellen von Kriterien > Erstellen von Kriterien.

    Neue Kriterien erstellen

  3. Konfigurieren Sie die Informationen in den folgenden Abschnitten.

Basisinformationen

  1. Geben Sie einen Kriteriennamen ein.

    Dies ist der „interne“ Name, der für die Beschreibung der Kriterien verwendet wird. Sie möchten zum Beispiel Ihre Kriterien „Produkte mit der höchsten Marge“ nennen, Sie möchten jedoch nicht, dass dieser Titel öffentlich angezeigt wird. Sehen Sie sich den nächsten Schritt an, um den öffentlichen Titel festzulegen.

    Abschnitt "Grundlegende Informationen"

  2. Geben Sie einen öffentlichen Anzeigetitel ein, der auf der Seite für alle Empfehlungen angezeigt wird, die diesen Kriterien entsprechen.

    So wäre es möglicherweise sinnvoll, „Personen, die das ansahen, sahen auch dies an“ oder „Ähnliche Produkte“ einzublenden, wenn Sie diese Kriterien zum Einblenden von Empfehlungen verwenden.

  3. Geben Sie eine kurze Beschreibung des Kriteriums ein.

    Die Beschreibung soll Ihnen dabei helfen, die Kriterien zu identifizieren, und kann Informationen über den Zweck der Kriterien enthalten.

  4. Wählen Sie eine Branche aus, die auf den Zielen Ihrer Recommendations-Aktivität basiert.

    Vertikaler Markt Ziel
    Einzelhandel/E-Commerce Zum Kauf führende Konversion
    Lead-Generierung/B2B/Finanzdienstleistungen Konversion ohne Kauf
    Medien/Verlagswesen Interaktion

    Andere Optionen für Kriterien ändern sich auf Grundlage des vertikalen Markts, den Sie auswählen.

  5. Wählen Sie einen Seitentyp aus.

    Verschiedene Seitentypen stehen zur Verfügung.

    Vertikaler Markt und Seitentyp werden zusammen genutzt, um Ihre gespeicherten Kriterien zu kategorisieren, wodurch die Wiederverwendung der Kriterien für andere Recommendations-Aktivitäten erleichtert wird.

Recommendations-Algorithmus

  1. Wählen Sie eine Algorithmustyp und Algorithmus:

    Abschnitt "Empfohlener Algorithmus"

    Algorithmustyp Verwendungsbereiche Verfügbare Algorithmen
    Warenkorbbasiert Machen Sie Empfehlungen basierend auf den Inhalten des Warenkorbs des Benutzers.
    • Personen, die diese ansahen, sahen auch
    • Personen, die diese ansahen, kauften diese
    • Personen, die diese kauften, kauften diese
    Popularitätsbasiert Machen Sie Empfehlungen basierend auf der allgemeinen Beliebtheit eines Artikels auf Ihrer Site oder auf der Beliebtheit von Artikeln in der bevorzugten oder am häufigsten angezeigten Kategorie, Marke, Genre usw. eines Benutzers.
    • Am häufigsten angezeigt auf der gesamten Site
    • Am häufigsten angezeigt nach Kategorie
    • Am häufigsten nach Elementattribut angezeigt
    • Topverkäufe auf der gesamten Site
    • Topverkäufe nach Kategorie
    • Topverkäufe nach Elementattribut
    • Top nach Analytics-Metrik
    Artikelbasiert Empfehlungen aussprechen, die darauf basieren, ähnliche Artikel wie ein Artikel zu finden, den der Benutzer gerade ansieht oder kürzlich angesehen hat.
    • Personen, die das ansahen, sahen auch dies an
    • Personen, die das ansahen, kauften dies
    • Personen, die das kauften, kauften dies
    • Elemente mit ähnlichen Attributen
    Benutzerbasiert Empfehlungen basierend auf dem Benutzerverhalten erstellen.
    • Vor Kurzem aufgerufene Artikel
    • Empfohlen für Sie
    Benutzerdefinierte Kriterien Machen Sie Empfehlungen basierend auf einer von Ihnen hochgeladenen benutzerdefinierten Datei.
    • Benutzerspezifischer Algorithmus
    HINWEIS

    Wenn Sie Elemente/ Medien mit ähnlichen Attributen, können Sie Ähnlichkeitsregeln von Inhalten.

  2. Wählen Sie nach Bedarf eine Elementattribut und Profilattribut zur Übereinstimmung, Empfehlungsschlüssel, Filterschlüssel und/oder Analytics-Metrik um den Algorithmus zu konfigurieren.

Die restlichen Konfigurationsoptionen für Algorithmen variieren je nach ausgewähltem Algorithmus. Um die Konfiguration des Algorithmus abzuschließen, wählen Sie eine Empfehlungsschlüssel, Filterschlüssel, Grundlage der Zusammenarbeit, Analytics-Metrikund/oder Elementattribut und Profilattribut zur Übereinstimmung.

Weitere Informationen zur Auswahl eines Empfehlungsschlüssel, siehe Stützen der Empfehlung auf einen Empfehlungsschlüssel.

Datenquelle

  1. Wählen Sie die gewünschte Verhaltensdatenquelle: Adobe Target oder Analytics.

    HINWEIS

    Die Verhaltensdatenquelle -Abschnitt wird nur angezeigt, wenn Ihre Implementierung Analytics for Target (A4T).

    Abschnitt "Verhaltensdatenquelle"

    Wenn Sie sich für Analytics entschieden haben, wählen Sie die gewünschte Report Suite.

    Wenn die Kriterien Adobe Analytics da die Verhaltens-Datenquelle nach ihrer Erstellung von der Zeit für die Kriterienverfügbarkeit abhängig ist, ob die ausgewählte Report Suite und das Lookback-Fenster für andere Kriterien verwendet wurden, wie unten beschrieben:

    • Einmalige Einrichtung der Report Suite: Wenn eine Report Suite zum ersten Mal mit einem Datumsbereich-Lookback-Fenster verwendet wird, kann es zwei bis sieben Tage dauern, bis Target Recommendations die Verhaltensdaten für die ausgewählte Report Suite von Analytics vollständig heruntergeladen hat. Dieser Zeitraum hängt von der Analytics Systemlast.
    • Neue oder bearbeitete Kriterien mit einer bereits verfügbaren Report Suite: Wenn Sie ein neues Kriterium erstellen oder ein vorhandenes Kriterium bearbeiten und die ausgewählte Report Suite bereits mit Target Recommendations verwendet wurde und der Datumsbereich gleich oder kleiner als der ausgewählte Datumsbereich ist, sind die Daten unmittelbar verfügbar und es ist keine einmalige Einrichtung erforderlich. In diesem Fall oder wenn die Einstellungen eines Algorithmus bearbeitet werden, ohne dass die ausgewählte Report Suite oder der ausgewählte Datumsbereich geändert wird, wird der Algorithmus innerhalb von 12 Stunden ausgeführt bzw. erneut ausgeführt.
    • Laufende Ausführung von Algorithmen: Daten werden täglich von Analytics zu Target Recommendations übertragen. Beispiel: Wenn sich ein Benutzer ein Produkt ansieht, wird für die Empfehlung Viewed Affinity in nahezu Echtzeit ein Produktansichts-Tracking-Aufruf an Analytics gesendet. Die Analytics-Daten werden am Morgen des nächsten Tages an Target gesendet und Target führt den Algorithmus in weniger als 12 Stunden aus.

    Weitere Informationen finden Sie unter Verwenden von Adobe Analytics mit Target Recommendations.

  2. Legen Sie die Lookback-Fenster , um den Zeitraum der verfügbaren historischen Benutzerverhaltensdaten zu bestimmen, die bei der Bestimmung der anzuzeigenden Empfehlungen verwendet werden sollen. Diese Option ist für alle Algorithmen verfügbar, mit Ausnahme von Elementen mit ähnlichen Attributen und benutzerspezifischen Algorithmen.

    Regler für Lookback-Fenster

    Wählen Sie ein kürzeres Datenfenster, wenn Ihre Site durch hohes Traffic-Aufkommen und häufig wechselndes Verhalten gekennzeichnet ist. Ein kürzeres Fenster ermöglicht es Recommendations, besser auf Änderungen am Markt und in Ihrem Unternehmen zu reagieren. Ein kürzeres Fenster bedeutet zum Beispiel, dass Recommendations Änderungen im Besucherverhalten erkennt, wenn Ihre Besucher Saisoneinkäufe absolvieren - wie etwa zum Schulanfang oder zu Weihnachten –, und Artikel empfiehlt, die zur jeweiligen Einkaufssaison passen.

    Wenn Sie nur über wenige Daten verfügen oder das Besucherverhalten sich nur selten ändert, können Sie ein längeres Fenster auswählen. Bei vielen Sites führt ein kürzeres Fenster jedoch zu Empfehlungen mit höherer Qualität.

    Die verfügbaren Datenbereiche sind:

    Option "Lookback-Fenster" Aktualisierte Häufigkeit (wird beim Bewegen des Mauszeigers angezeigt) Unterstützte Algorithmen
    Sechs Stunden Algorithmus wird alle 3-6 Stunden ausgeführt Popularitätsbasiert Algorithmen bei Auswahl Verhaltensdatenquelle is Adobe Target
    Ein Tag Der Algorithmus wird alle 12-24 Stunden ausgeführt Popularitätsbasiert Algorithmen
    Zwei Tage Der Algorithmus wird alle 12-24 Stunden ausgeführt
    • Popularitätsbasiert Algorithmen
    • Artikelbasiert Algorithmen
    • Benutzerbasiert Algorithmen
    • Warenkorbbasiert Algorithmen
    Eine Woche Der Algorithmus wird alle 24-48 Stunden ausgeführt
    • Popularitätsbasiert Algorithmen
    • Artikelbasiert Algorithmen
    • Benutzerbasiert Algorithmen
    • Warenkorbbasiert Algorithmen
    Zwei Woche Der Algorithmus wird alle 24-48 Stunden ausgeführt
    • Popularitätsbasiert Algorithmen
    • Artikelbasiert Algorithmen
    • Alle Benutzerbasiert Algorithmen
    • Warenkorbbasiert Algorithmen
    Einen Monat (30 Tage) Der Algorithmus wird alle 24-48 Stunden ausgeführt
    • Popularitätsbasiert Algorithmen
    • Artikelbasiert Algorithmen
    • Benutzerbasiert Algorithmen
    • Warenkorbbasiert Algorithmen
    Zwei Monate (61 Tage) Der Algorithmus wird alle 24-48 Stunden ausgeführt
    • Popularitätsbasiert Algorithmen
    • Artikelbasiert Algorithmen
    • Benutzerbasiert Algorithmen
    • Warenkorbbasiert Algorithmen

Backup Content

Backup Content -Regeln bestimmen, was passiert, wenn die Anzahl der empfohlenen Artikel Ihre Empfehlungsdesign. Möglicherweise geben Recommendations-Kriterien weniger Empfehlungen zurück, als im Entwurf angegeben sind. Wenn Ihr Entwurf beispielsweise über Slots für vier Artikel verfügt, Ihre Kriterien jedoch nur dazu führen, dass zwei Artikel empfohlen werden, können Sie die verbleibenden Slots leer lassen. Sie können Ersatzempfehlungen zum Ausfüllen der zusätzlichen Slots verwenden oder festlegen, dass keine Empfehlungen angezeigt werden.

Inhaltsabschnitt

  1. (Optional) Schieben Sie die Teilweises Design-Rendering Umschalten auf die Position "Ein".

    Es werden so viele Plätze wie möglich ausgefüllt, aber die Designvorlage kann leere Plätze für die verbleibenden Plätze enthalten. Wenn diese Option deaktiviert ist und nicht genügend Inhalt vorhanden ist, um alle verfügbaren Plätze auszufüllen, werden keine Empfehlungen bereitgestellt und stattdessen werden Standardinhalte angezeigt.

    Aktivieren Sie diese Option, wenn Empfehlungen mit leeren Slots bereitgestellt werden sollen. Verwenden Sie Reserveempfehlungen, wenn Sie möchten, dass Empfehlungs-Slots mit Inhalten gefüllt werden, die auf Ihren Kriterien basieren und leere Slots enthalten, die mit ähnlichen oder beliebten Inhalten von Ihrer Site gefüllt sind, wie im nächsten Schritt erläutert.

  2. (Optional) Schieben Sie die Backup-Inhalt anzeigen Umschalten auf die Position "Ein".

    Füllen Sie alle verbleibenden leeren Slots im Design mit einer zufälligen Auswahl der am häufigsten angezeigten Produkte aus Ihrer gesamten Site aus.

    Die Verwendung von Reserveempfehlungen stellt sicher, dass Ihr Empfehlungsentwurf alle verfügbaren Slots ausfüllt. Angenommen, Sie haben ein Design von 4 x 1, wie unten dargestellt:

    4 x 1 Design

    Angenommen, Ihre Kriterien führen dazu, dass nur zwei Artikel empfohlen werden. Wenn Sie die Teilweises Design-Rendering -Option, werden die ersten beiden Slots ausgefüllt, aber die verbleibenden beiden Slots bleiben leer. Wenn Sie jedoch die Backup Recommendations anzeigen -Option, werden die ersten beiden Slots nach Ihren angegebenen Kriterien ausgefüllt und die verbleibenden beiden Slots werden basierend auf Ihren Reserveempfehlungen ausgefüllt.

    Die folgende Matrix zeigt das Ergebnis, das Sie bei Verwendung der Teilweises Design-Rendering und Backup Content options:

    Teilweises Entwurfs-Rendering Backup Content Ergebnis
    Deaktiviert Deaktiviert Wenn weniger Empfehlungen zurückgegeben werden als im Entwurf vorgesehen, wird der Empfehlungsentwurf durch Standardinhalte ersetzt und es erscheinen keine Empfehlungen.
    Aktiviert Deaktiviert Der Entwurf wird gerendert, kann jedoch leere Positionen enthalten, falls weniger Empfehlungen zurückgegeben werden, als im Entwurf vorgesehen.
    Aktiviert Aktiviert Ersatzempfehlungen erscheinen an solchen leeren Positionen und vervollständigen den Entwurf.
    Sollte die Anwendung von Einschlussregeln auf die Ersatzempfehlungen die Anzahl an geeigneten Ersatzempfehlungen so stark einschränken, dass der Entwurf nicht vervollständigt werden kann, wird der Entwurf nur teilweise gerendert.
    In dem Fall, dass die Kriterien keine Empfehlungen zurückgeben und die Einschlussregeln die Ersatzempfehlungen auf null reduzieren, wird der Entwurf durch Standardinhalte ersetzt.
    Deaktiviert Aktiviert Ersatzempfehlungen erscheinen an solchen leeren Positionen und vervollständigen den Entwurf.
    Sollte die Anwendung von Einschlussregeln auf die Ersatzempfehlungen die Anzahl an geeigneten Ersatzempfehlungen so stark einschränken, dass der Entwurf nicht vervollständigt werden kann, wird der Entwurf durch Standardinhalte ersetzt und es werden keine Empfehlungen angezeigt.

    Weitere Informationen finden Sie unter Verwenden einer Reserveempfehlung.

  3. (Bedingt) Wenn Sie ausgewählt haben Backup-Inhalt anzeigen im vorherigen Schritt können Sie Anwenden von Einschlussregeln auf Ersatzempfehlungen.

    Einschlussregeln bestimmen, welche Artikel in Ihren Empfehlungen enthalten sind. Die verfügbaren Optionen hängen von Ihrem vertikalen Markt ab.

    Weitere Informationen finden Sie unter Festlegen von Einschlussregeln unten.

Ähnlichkeit von Inhalten

Verwenden Sie Regeln zur Ähnlichkeit von Inhalten für die Bereitstellung von Empfehlungen basierend auf Artikeln oder Medienattributen.

HINWEIS

Wenn Sie Artikelbasiert/ Medien mit ähnlichen Attributen als Algorithmustyp und Algorithmus können Sie Regeln zur Ähnlichkeit von Inhalten festlegen.

Mithilfe der Funktion für Ähnlichkeit von Inhalten werden Artikelattribut-Schlüsselwörter verglichen und Empfehlungen basierend darauf erstellt, wie viele Schlüsselwörter die verschiedenen Artikel gemeinsam haben. Empfehlungen, die auf der Ähnlichkeit von Inhalten basieren, benötigen für herausragende Ergebnisse keine historischen Daten.

Eine Erstellung von Empfehlungen anhand der Ähnlichkeit von Inhalten ist besonders bei neuen Artikeln effektiv, die bei Empfehlungen mit der Funktion Personen, die das ansahen, sahen auch dies an und anderen, auf historischem Verhalten von Benutzern basierenden Optionen nicht angezeigt werden. Anhand der Ähnlichkeit von Inhalten können sinnvolle Empfehlungen für neue Benutzer erstellt werden, für die noch keine historischen Daten oder Einkäufe verzeichnet wurden.

Wenn Sie Artikelbasiert/ Medien mit ähnlichen Attributen können Sie Regeln erstellen, um die Wichtigkeit bestimmter Elementattribute bei der Bestimmung von Empfehlungen zu erhöhen oder zu verringern. Bei Artikeln wie beispielsweise Büchern möchten Sie möglicherweise die Bedeutung von Attributen wie Genre, Autor, Serie und so weiter hervorheben, um ähnliche Bücher zu empfehlen.

Bild für Ähnlichkeit von Inhalten

Da beim Vergleich der Ähnlichkeit von Inhalten Stichwörter verwendet werden, führen einige Attribute wie Botschaft oder Beschreibung zu einer Verwässerung der Vergleiche. Sie können daher Regeln erstellen, mit denen solche Attribute ignoriert werden.

Standardmäßig sind alle Attribute auf den Wert Grundlinie eingestellt. Sie müssen keine Regeln erstellen, wenn Sie diese Einstellung nicht ändern möchten.

HINWEIS

Der Algorithmus zur Ähnlichkeit von Inhalten verwendet möglicherweise Stichproben bei der Berechnung der Ähnlichkeit zwischen Elementen. Infolgedessen können die Ähnlichkeitsbewertungen zwischen den Elementen bei den einzelnen Algorithmusausführungen variieren.

Einschlussregeln

Mehrere Optionen ermöglichen es Ihnen, die in Ihren Empfehlungen angezeigten Elemente einzuschränken. Sie können Einschlussregeln beim Erstellen von Kriterien oder Promotions verwenden.

Einschlussregeln

Einschlussregeln sind optional. Das Festlegen dieser Regeln jedoch ermöglicht Ihnen die bessere Steuerung der Artikel, die in Ihren Empfehlungen erscheinen. Jedes konfigurierte Detail schränkt die Anzeigekriterien weiter ein.

Beispiel: Sie können nur Damenschuhe anzeigen, deren Bestand über 50 und deren Preis zwischen 25 und 45 Euro liegt. Sie können auch jedes Attribut gewichten, sodass die für Ihr Unternehmen wichtigeren Artikel am ehesten angezeigt werden.

Weiteres Beispiel: Sie können Stellenangebote ausschließlich für Besucher Ihrer Website anzeigen, die aus bestimmten Orten stammen und über die erforderlichen Abschlüsse verfügen.

Die Optionen für die Einschlussregeln variieren je nach vertikalem Markt. Einschlussregeln werden standardmäßig auf Ersatzempfehlungen angewendet.

WICHTIG

Sie sollten mit Einschlussregeln vorsichtig umgehen. Sie sind nützlich, wenn Ihr Unternehmen beispielsweise mit Regeln arbeitet, die erfordern, dass eine Marke nicht empfohlen wird, während eine andere Marke gezeigt wird. Bei dieser Funktion kommt es jedoch zu Opportunitätskosten. Ein gewisser Lift-Prozentsatz geht möglicherweise verloren, wenn Artikel nicht angezeigt werden, die normalerweise durch die Aktivitätskriterien angezeigt werden würden.

Die Einschlussregeln werden mit „AND“ verbunden. Alle Regeln müssen erfüllt sein, damit ein Artikel in den Empfehlungen berücksichtigt wird.

Führen Sie zum Erstellen einer einfachen Einschlussregel die folgenden Schritte aus, um - wie im oben stehenden Beispiel - nur Damenschuhe mit einem Bestand von mehr als 50 und einem Preis von zwischen 25 und 45 € anzuzeigen.

  1. (Bedingt) Schieben Sie die Zulassen, dass kürzlich gekaufte Artikel empfohlen werden? Umschalten auf die Position "Ein".

    Diese Einstellung basiert auf productPurchasedId. Das Standardverhalten ist es, zuvor gekaufte Artikel nicht zu empfehlen. In den meisten Fällen ist es nicht sinnvoll, Artikel zu bewerben, die Kunden kürzlich gekauft haben. Es ist nützlich, wenn Sie Artikel verkaufen, die Kunden in der Regel nur einmal kaufen, zum Beispiel Kayaks. Wenn Sie Artikel verkaufen, die Personen wiederholt kaufen, wie Shampoo oder andere persönliche Artikel, sollten Sie diese Option aktivieren.

  2. Legen Sie einen Preisbereich für die Produkte fest, die Sie empfehlen möchten.

  3. Legen Sie den Mindestbestand für die Produkte fest, die Sie empfehlen möchten.

  4. Konfigurieren Sie die Empfehlung, um nur Artikel anzuzeigen, wenn sie bestimmte Kriterien erfüllen.

    Recs_InclusionRules-Bild

    Sie können angeben, dass Artikel nur berücksichtigt werden, wenn eines der Attribute in der Liste eine oder mehrere angegebene Bedingungen erfüllt oder nicht erfüllt.

    Die verfügbaren Auswerter sind von dem Wert abhängig, den Sie in der ersten Dropdownliste auswählen. Sie können mehrere Elemente auflisten. Diese Artikel werden durch ODER ausgewertet.

    Mehrere Regeln werden mit „AND“ kombiniert.

    HINWEIS

    Diese Option beschränkt die in der Empfehlung angezeigten Elemente. Sie hat keine Auswirkungen darauf, auf welchen Seiten die Empfehlung angezeigt wird. Um eine Einschränkung bezüglich der Anzeige der Empfehlung vorzunehmen, wählen Sie die Seiten im Experience Composer aus.

Weitere Informationen finden Sie unter Verwenden dynamischer und statischer Einschlussregeln.

Attributgewichtung

Sie können mehrere Regeln hinzufügen, um den Algorithmus anhand wichtiger Informationen oder Metadaten zum Inhaltskatalog zu "umkehren", sodass bestimmte Elemente mit höherer Wahrscheinlichkeit angezeigt werden.

So haben Sie zum Beispiel die Möglichkeit, rabattierten Artikeln eine höherer Gewichtung zu verleihen, damit sie öfter in den Empfehlungen erscheinen. Artikel, die nicht Teil des Sonderangebots sind, werden nicht vollständig ausgeschlossen, jedoch weniger häufig angezeigt. Auf denselben Algorithmus können mehrere gewichtete Attribute angewendet werden und die gewichteten Attribute können mit dem in der Empfehlung aufgeteilten Traffic getestet werden.

  1. Wählen Sie einen Wert aus.

    Der Wert bestimmt den Typ des Elements, das mit größerer Wahrscheinlichkeit und auf der Basis mehrerer verfügbarer Kriterien angezeigt wird.

  2. Wählen Sie einen Auswerter.

  3. Geben Sie das Keyword ein, um die Regelattribute abzuschließen.

    Die vollständige Regel könnte beispielsweise "Kategorie enthält Unterzeichenfolgen-Schuhe"lauten.

    Recs_AttributeWeighting-Bild

  4. Wählen Sie die Wertigkeit aus, die der Regel zugeordnet werden soll.

    Die Gewichtung kann von 0 bis 100 in 25er-Schritten eingestellt werden.

  5. Fügen Sie nach Bedarf weitere Regeln hinzu.

Klicken Sie abschließend auf Speichern.

Wenn Sie eine neue Recommendations-Aktivität erstellen oder eine bestehende bearbeiten, wird das Kontrollkästchen Kriterien für später speichern automatisch aktiviert. Sollten Sie die Kriterien nicht in anderen Aktivitäten verwenden wollen, deaktivieren Sie das Kontrollkästchen, bevor Sie speichern.

Schulungsvideo: Erstellen von Kriterien in Recommendations (12:33) Tutorial-Badge

Dieses Video enthält die folgenden Informationen:

  • Erstellen von Kriterien
  • Erstellen von Kriteriensequenzen
  • Hochladen benutzerdefinierter Kriterien

Auf dieser Seite