B2B版本

Real-Time CDP B2B中的預測性銷售線索和帳戶評分

上次更新: 2023-11-21
  • 主題:
  • Profiles
    檢視有關此主題的更多資訊
  • B2B
    檢視有關此主題的更多資訊
  • 建立對象:
  • Admin

B2B行銷人員在行銷漏斗頂端面臨多種挑戰。 為了有效率,B2B行銷人員需要自動化方式來限定大量人員,以便聚焦於高價值目標。 資格應該與最終銷售結果保持一致,而不僅僅是行銷轉換。

帳戶是購買B2B產品和服務的最終實體。 為了有效行銷和銷售,B2B行銷人員不僅要瞭解個人的情況,還要瞭解帳戶購買的可能性。

尤其是以帳戶為基礎的行銷,會將帳戶策略化為行銷目標。 帳戶購買傾向分數可大幅協助B2B行銷人員安排帳戶優先順序,以實現投資報酬的最大化。

預測性銷售線索和帳戶評分服務透過學習和預測機會階段轉換事件,並將個人活動彙總到帳戶層級以產生帳戶分數,來解決上述挑戰。 這些分數可做為個人設定檔和帳戶設定檔的自訂欄位取得,並可輕鬆作為區段條件納入,以縮小您的對象範圍。 彙總和單位層級也提供主要影響因素,以協助B2B行銷人員更瞭解哪些元素驅動分數。

瞭解預測性銷售線索和帳戶評分

注意

Marketo 資料來源目前為必要專案,因為它是唯一可在人員設定檔層級提供轉換事件的資料來源。

預測性銷售線索和帳戶評分使用樹狀結構(隨機森林/漸層提升)機器學習方法,以建立預測性銷售線索評分模型。

管理員可以設定多個設定檔評分目標(也稱為模型),每個已設定的轉換事件各一個,以便為每個已設定的目標產生個別的分數。

預測性銷售線索和帳戶評分支援下列轉換目標型別和欄位:

目標型別 欄位
leadOperation.convertLead
  • leadOperation.convertLead.convertedStatus
  • leadOperation.convertLead.assignTo
opportunityEvent.opportunityUpdated
  • opportunityEvent.dataValueChanges.attributeName
  • opportunityEvent.dataValueChanges.newValue
  • opportunityEvent.dataValueChanges.oldValue
  • 範例: opportunityEvent.dataValueChanges.attributeName 等於 StageopportunityEvent.dataValueChanges.newValue 等於 Contract

演演算法會考量下列屬性和輸入資料:

  • 個人設定檔
XDM欄位 必填/選填
personComponents.sourceAccountKey.sourceKey 必要
workAddress.country 選填
extSourceSystemAudit.createdDate 必要
extendedWorkDetails.jobTitle 選填
注意

演演算法只會檢查 sourceAccountKey.sourceKey 「人員:人員元件」欄位群組中的欄位。

  • 帳戶設定檔
XDM欄位 必填/選填
accountKey.sourceKey 必要
extSourceSystemAudit.createdDate 必要
accountOrganization.industry 選填
accountOrganization.numberOfEmployees 選填
accountOrganization.annualRevenue.amount 選用
  • 體驗事件
XDM欄位 必填/選填
_id 必要
personKey.sourceKey 必要
timestamp 必要
eventType 必要

支援多種機型,並設定下列硬性限制:

  • 每個生產沙箱有權使用五個模型。
  • 每個開發沙箱都有權使用一種模型。

資料品質要求如下:

  • 理想情況下,應提供兩年的最新資料以供訓練之用。
  • 所需的最小資料長度為六個月加上預測期間。
  • 對於每個預測目標,至少需要10個合格的轉換事件。

評分工作每天都會執行,且結果會儲存為設定檔屬性和帳戶屬性,然後可用於區段定義和個人化。 現成的Analytics深入分析也可在帳戶概述控制面板上取得。

請參閱檔案以取得如何操作的詳細資訊 管理預測性銷售線索和帳戶評分 服務。

檢視預測性銷售線索與帳戶評分結果

工作執行後,結果會儲存在名稱下的每個模型的新系統資料集中 LeadsAI.Scores - 分數名稱. 每個分數欄位群組都位於 {CUSTOM_FIELD_GROUP}.LeadsAI.the_score_name.

屬性 說明
分數 設定檔在定義的時間範圍內達到預測目標的相對可能性。 此值不被視為機率百分比,而是個人資料相較於整體母體的可能性。 此分數介於0到100之間。
百分位數 此值提供設定檔相對於其他類似評分的設定檔的效能相關資訊。 百分位數的範圍介於1到100。
模型型別 選取的模型型別會指示這是人員或帳戶分數。
評分日期 評分發生的日期。
影響因素 個人資料可能發生轉換的預測原因。 因子由下列屬性組成:
  • 程式碼:對設定檔的預測分數產生正面影響的設定檔或行為屬性。
  • 值:設定檔或行為屬性的值。
  • 重要性:表示設定檔或行為屬性對預測分數(低、中、高)的權重。

檢視客戶設定檔分數

若要檢視個人設定檔的預測性分數,請選取 設定檔 在左側面板的「客戶」區段下,然後輸入身分名稱空間和身分值。 完成後,選取 檢視.

接著,從清單中選取設定檔。

客戶設定檔

詳細資料 頁面現在包含預測性分數。 按一下預測性分數旁的圖表圖示。

客戶設定檔預測性分數

快顯對話方塊會顯示分數、整體分數分佈、此分數的主要影響因素,以及分數目標定義。

客戶設定檔預測性分數詳細資訊

監控預測性銷售線索和帳戶評分工作

您可以透過儀表板監視基本度量和每日工作執行狀態。 這些量度包括:

  • 已評分的人員/帳戶個人檔案總數
  • 下一個評分工作(日期)
  • 下一個訓練工作(日期)

如需詳細資訊,請參閱以下檔案: 監控預測性銷售線索和帳戶評分的工作.

本頁內容