Adobe-definierte Funktionen, hier ADFs genannt, sind vordefinierte Funktionen in Adobe Experience Platform Query Service, mit denen gängige geschäftsbezogene Aufgaben für Experience Event Daten. Dazu gehören Funktionen für Sessionization und Attribution wie in Adobe Analytics.
Dieses Dokument enthält Informationen zu den in der Adobe definierten Funktionen. Query Service.
Die Experience Cloud-ID (ECID) wird auch als MCID bezeichnet und wird weiterhin in Namespaces verwendet.
Ein großer Teil der Business-Logik setzt voraus, die Kontaktpunkte (bzw. „Touchpoints“) zu erfassen, an denen ein Kunde mit Ihrem Unternehmen interagiert, und diese nach dem Zeitpunkt ihres Eintretens zu sortieren. Diese Unterstützung wird von Spark SQL in Form von Fensterfunktionen. Window-Funktionen sind Teil von Standard-SQL und werden von einer Vielzahl anderer SQL-Engines unterstützt.
Eine Window-Funktion aktualisiert eine Aggregation und gibt für jede Zeile in Ihrer sortierten Untergruppe ein einzelnes Element zurück. Die einfachste Aggregationsfunktion lautet SUM()
. SUM()
berechnet aus den von Ihnen angegebenen Zeilen die Summe. Wenden Sie SUM()
stattdessen auf ein Fenster an, wird es in eine Window-Funktion umgewandelt und die kumulative Summe für jede Zeile ausgegeben.
Die Mehrheit der Spark SQL-Helfer sind Window-Funktionen, die jede Zeile in Ihrem Fenster aktualisieren, wobei der Status dieser Zeile hinzugefügt wird.
Abfragesyntax
OVER ({PARTITION} {ORDER} {FRAME})
Parameter | Beschreibung | Beispiel |
---|---|---|
{PARTITION} |
Eine auf einer Spalte oder einem verfügbaren Feld basierende Untergruppe von Zeilen. | PARTITION BY endUserIds._experience.mcid.id |
{ORDER} |
Eine Spalte oder ein verfügbares Feld zur Sortierung der Zeilen-Untergruppe. | ORDER BY timestamp |
{FRAME} |
Eine Untergruppe der Zeilen in einer Partition. | ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
Wenn Sie mit Experience Event Daten aus einer Website, Mobile App, einem interaktiven Sprachreaktionssystem oder einem anderen Kanal zur Kundeninteraktion helfen Ihnen dabei, Ereignisse nach einem bestimmten Aktivitätszeitraum zu gruppieren. In der Regel fußt eine Aktivität auf einer bestimmten Absicht wie der Suche nach einem Produkt, der Zahlung einer Rechnung, dem Abrufen des Kontostandes, dem Ausfüllen eines Formulars etc.
Diese Gruppierung oder Sitzungserstellung von Daten hilft bei der Zuordnung der Ereignisse, um mehr Kontext über das Kundenerlebnis zu finden.
Weitere Informationen zur Sitzungserstellung in Adobe Analytics finden Sie in der Dokumentation unter kontextbezogene Sitzungen.
Abfragesyntax
SESS_TIMEOUT({TIMESTAMP}, {EXPIRATION_IN_SECONDS}) OVER ({PARTITION} {ORDER} {FRAME})
Parameter | Beschreibung |
---|---|
{TIMESTAMP} |
Das Zeitstempelfeld im Datensatz. |
{EXPIRATION_IN_SECONDS} |
Die Anzahl der Sekunden, die zwischen Ereignissen erforderlich sind, um das Ende der aktuellen Sitzung und den Beginn einer neuen Sitzung zu qualifizieren. |
Eine Erläuterung der Parameter innerhalb der OVER()
-Funktion finden Sie im Abschnitt Bereich für Fensterfunktionen.
Beispielabfrage
SELECT
endUserIds._experience.mcid.id as id,
timestamp,
SESS_TIMEOUT(timestamp, 60 * 30)
OVER (PARTITION BY endUserIds._experience.mcid.id
ORDER BY timestamp
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS session
FROM experience_events
ORDER BY id, timestamp ASC
LIMIT 10
Ergebnisse
id | timestamp | session
----------------------------------+-----------------------+--------------------
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:55:53.0 | (0,1,true,1)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:56:51.0 | (58,1,false,2)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:57:47.0 | (56,1,false,3)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:58:27.0 | (40,1,false,4)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:59:22.0 | (55,1,false,5)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:16:23.0 | (1361821,2,true,1)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:17:17.0 | (54,2,false,2)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:18:06.0 | (49,2,false,3)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:18:39.0 | (33,2,false,4)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:19:10.0 | (31,2,false,5)
(10 rows)
Die Ergebnisse der angegebenen Beispielabfrage werden im session
Spalte. Die session
-Spalte besteht aus den folgenden Komponenten:
({TIMESTAMP_DIFF}, {NUM}, {IS_NEW}, {DEPTH})
Parameter | Beschreibung |
---|---|
{TIMESTAMP_DIFF} |
Die Zeitdifferenz in Sekunden zwischen dem aktuellen und dem vorherigen Datensatz. |
{NUM} |
Eine eindeutige Sitzungsnummer, beginnend bei 1, für den Schlüssel, der in der Variablen PARTITION BY der Window-Funktion. |
{IS_NEW} |
Ein boolescher Wert, der angibt, ob ein Datensatz der erste einer Sitzung ist. |
{DEPTH} |
Die Tiefe des aktuellen Datensatzes innerhalb der Sitzung. |
Diese Abfrage gibt den Sitzungsstatus für die aktuelle Zeile basierend auf dem aktuellen Zeitstempel und dem angegebenen Ausdruck zurück und startet eine neue Sitzung mit der aktuellen Zeile.
Abfragesyntax
SESS_START_IF({TIMESTAMP}, {TEST_EXPRESSION}) OVER ({PARTITION} {ORDER} {FRAME})
Parameter | Beschreibung |
---|---|
{TIMESTAMP} |
Das Zeitstempelfeld im Datensatz. |
{TEST_EXPRESSION} |
Ein Ausdruck, mit dem Sie die Datenfelder überprüfen möchten. Beispiel: application.launches > 0 . |
Eine Erläuterung der Parameter innerhalb der OVER()
-Funktion finden Sie im Abschnitt Bereich für Fensterfunktionen.
Beispielabfrage
SELECT
endUserIds._experience.mcid.id AS id,
timestamp,
IF(application.launches.value > 0, true, false) AS isLaunch,
SESS_START_IF(timestamp, application.launches.value > 0)
OVER (PARTITION BY endUserIds._experience.mcid.id
ORDER BY timestamp
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS session
FROM experience_events
ORDER BY id, timestamp ASC
LIMIT 10
Ergebnisse
id | timestamp | isLaunch | session
----------------------------------+-----------------------+----------+--------------------
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:55:53.0 | true | (0,1,true,1)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:56:51.0 | false | (58,1,false,2)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:57:47.0 | false | (56,1,false,3)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:58:27.0 | true | (40,2,true,1)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:59:22.0 | false | (55,2,false,2)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:16:23.0 | false | (1361821,2,false,3)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:17:17.0 | false | (54,2,false,4)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:18:06.0 | false | (49,2,false,5)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:18:39.0 | false | (33,2,false,6)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:19:10.0 | false | (31,2,false,7)
(10 rows)
Die Ergebnisse der angegebenen Beispielabfrage werden im session
Spalte. Die session
-Spalte besteht aus den folgenden Komponenten:
({TIMESTAMP_DIFF}, {NUM}, {IS_NEW}, {DEPTH})
Parameter | Beschreibung |
---|---|
{TIMESTAMP_DIFF} |
Die Zeitdifferenz in Sekunden zwischen dem aktuellen und dem vorherigen Datensatz. |
{NUM} |
Eine eindeutige Sitzungsnummer, beginnend bei 1, für den Schlüssel, der in der Variablen PARTITION BY der Window-Funktion. |
{IS_NEW} |
Ein boolescher Wert, der angibt, ob ein Datensatz der erste einer Sitzung ist. |
{DEPTH} |
Die Tiefe des aktuellen Datensatzes innerhalb der Sitzung. |
Diese Abfrage gibt den Sitzungsstatus für die aktuelle Zeile basierend auf dem aktuellen Zeitstempel und dem angegebenen Ausdruck zurück, beendet die aktuelle Sitzung und startet in der nächsten Zeile eine neue Sitzung.
Abfragesyntax
SESS_END_IF({TIMESTAMP}, {TEST_EXPRESSION}) OVER ({PARTITION} {ORDER} {FRAME})
Parameter | Beschreibung |
---|---|
{TIMESTAMP} |
Das Zeitstempelfeld im Datensatz. |
{TEST_EXPRESSION} |
Ein Ausdruck, mit dem Sie die Datenfelder überprüfen möchten. Beispiel: application.launches > 0 . |
Eine Erläuterung der Parameter innerhalb der OVER()
-Funktion finden Sie im Abschnitt Bereich für Fensterfunktionen.
Beispielabfrage
SELECT
endUserIds._experience.mcid.id AS id,
timestamp,
IF(application.applicationCloses.value > 0 OR application.crashes.value > 0, true, false) AS isExit,
SESS_END_IF(timestamp, application.applicationCloses.value > 0 OR application.crashes.value > 0)
OVER (PARTITION BY endUserIds._experience.mcid.id
ORDER BY timestamp
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS session
FROM experience_events
ORDER BY id, timestamp ASC
LIMIT 10
Ergebnisse
id | timestamp | isExit | session
----------------------------------+-----------------------+----------+--------------------
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:55:53.0 | false | (0,1,true,1)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:56:51.0 | false | (58,1,false,2)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:57:47.0 | true | (56,1,false,3)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:58:27.0 | false | (40,2,true,1)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-01-18 06:59:22.0 | false | (55,2,false,2)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:16:23.0 | false | (1361821,2,false,3)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:17:17.0 | false | (54,2,false,4)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:18:06.0 | false | (49,2,false,5)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:18:39.0 | false | (33,2,false,6)
100080F22A45CB40-3A2B7A8E11096B6 | 2018-02-03 01:19:10.0 | false | (31,2,false,7)
(10 rows)
Die Ergebnisse der angegebenen Beispielabfrage werden im session
Spalte. Die session
-Spalte besteht aus den folgenden Komponenten:
({TIMESTAMP_DIFF}, {NUM}, {IS_NEW}, {DEPTH})
Parameter | Beschreibung |
---|---|
{TIMESTAMP_DIFF} |
Die Zeitdifferenz in Sekunden zwischen dem aktuellen und dem vorherigen Datensatz. |
{NUM} |
Eine eindeutige Sitzungsnummer, beginnend bei 1, für den Schlüssel, der in der Variablen PARTITION BY der Window-Funktion. |
{IS_NEW} |
Ein boolescher Wert, der angibt, ob ein Datensatz der erste einer Sitzung ist. |
{DEPTH} |
Die Tiefe des aktuellen Datensatzes innerhalb der Sitzung. |
Pfade können verwendet werden, um die Interaktionstiefe des Kunden zu verstehen, die beabsichtigten Schritte eines Erlebnisses wie geplant zu bestätigen und potenzielle Schmerzpunkte zu identifizieren, die sich auf den Kunden auswirken.
Die folgenden ADFs unterstützen die Erstellung von Pfadansichten aus ihren vorherigen und nächsten Beziehungen. Sie können vorherige und nächste Seiten erstellen oder mehrere Ereignisse durchlaufen, um Pfade zu erstellen.
Legt den vorherigen Wert eines bestimmten Felds fest, der innerhalb des Fensters eine festgelegte Anzahl von Schritten entfernt ist. Beachten Sie im Beispiel, dass die Variable WINDOW
-Funktion mit einem Frame von ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
die ADF so einstellen, dass sie sich die aktuelle Zeile und alle nachfolgenden Zeilen ansieht.
Abfragesyntax
PREVIOUS({KEY}, {SHIFT}, {IGNORE_NULLS}) OVER ({PARTITION} {ORDER} {FRAME})
Parameter | Beschreibung |
---|---|
{KEY} |
Die Spalte oder das Feld aus dem Ereignis. |
{SHIFT} |
(Optional) Die Anzahl der Ereignisse außerhalb des aktuellen Ereignisses. Der Standardwert ist 1. |
{IGNORE_NULLS} |
(Optional) Ein boolescher Wert, der angibt, ob null {KEY} -Werte ignoriert werden. Standardmäßig ist der Wert false . |
Eine Erläuterung der Parameter innerhalb der OVER()
-Funktion finden Sie im Abschnitt Bereich für Fensterfunktionen.
Beispielabfrage
SELECT endUserIds._experience.mcid.id, timestamp, web.webPageDetails.name
PREVIOUS(web.webPageDetails.name, 3)
OVER(PARTITION BY endUserIds._experience.mcid.id
ORDER BY timestamp
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS previous_page
FROM experience_events
ORDER BY endUserIds._experience.mcid.id, timestamp ASC
Ergebnisse
id | timestamp | name | previous_page
-----------------------------------+-----------------------+-------------------------------------+-----------------------------------------------------
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 17:15:28.0 | |
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 17:53:05.0 | Home |
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 17:53:45.0 | Kids | (Home)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 19:22:34.0 | | (Kids)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:01:12.0 | Home |
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:01:57.0 | Kids | (Home)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:03:36.0 | Search Results | (Kids)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:04:30.0 | Product Details: Pemmican Power Bar | (Search Results)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:05:27.0 | Shopping Cart: Cart Details | (Product Details: Pemmican Power Bar)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:06:07.0 | Shopping Cart: Shipping Information | (Shopping Cart: Cart Details)
(10 rows)
Die Ergebnisse der angegebenen Beispielabfrage werden im previous_page
Spalte. Der Wert innerhalb der previous_page
basiert auf der {KEY}
wird in der ADF verwendet.
Legt den nächsten Wert eines bestimmten Felds fest, der innerhalb des Fensters eine festgelegte Anzahl von Schritten entfernt ist. Beachten Sie im Beispiel, dass die Variable WINDOW
-Funktion mit einem Frame von ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
die ADF so einstellen, dass sie sich die aktuelle Zeile und alle nachfolgenden Zeilen ansieht.
Abfragesyntax
NEXT({KEY}, {SHIFT}, {IGNORE_NULLS}) OVER ({PARTITION} {ORDER} {FRAME})
Parameter | Beschreibung |
---|---|
{KEY} |
Die Spalte oder das Feld aus dem Ereignis. |
{SHIFT} |
(Optional) Die Anzahl der Ereignisse außerhalb des aktuellen Ereignisses. Der Standardwert ist 1. |
{IGNORE_NULLS} |
(Optional) Ein boolescher Wert, der angibt, ob null {KEY} -Werte ignoriert werden. Standardmäßig ist der Wert false . |
Eine Erläuterung der Parameter innerhalb der OVER()
-Funktion finden Sie im Abschnitt Bereich für Fensterfunktionen.
Beispielabfrage
SELECT endUserIds._experience.aaid.id, timestamp, web.webPageDetails.name,
NEXT(web.webPageDetails.name, 1, true)
OVER(PARTITION BY endUserIds._experience.aaid.id
ORDER BY timestamp
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING)
AS next_page
FROM experience_events
ORDER BY endUserIds._experience.aaid.id, timestamp ASC
LIMIT 10
Ergebnisse
id | timestamp | name | previous_page
-----------------------------------+-----------------------+-------------------------------------+---------------------------------------
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 17:15:28.0 | | (Home)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 17:53:05.0 | Home | (Kids)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 17:53:45.0 | Kids | (Home)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 19:22:34.0 | | (Home)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:01:12.0 | Home | (Kids)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:01:57.0 | Kids | (Search Results)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:03:36.0 | Search Results | (Product Details: Pemmican Power Bar)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:04:30.0 | Product Details: Pemmican Power Bar | (Shopping Cart: Cart Details)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:05:27.0 | Shopping Cart: Cart Details | (Shopping Cart: Shipping Information)
457C3510571E5930-69AA721C4CBF9339 | 2017-11-08 20:06:07.0 | Shopping Cart: Shipping Information | (Shopping Cart: Billing Information)
(10 rows)
Die Ergebnisse der angegebenen Beispielabfrage werden im previous_page
Spalte. Der Wert innerhalb der previous_page
basiert auf der {KEY}
wird in der ADF verwendet.
Mit der Zeit-zwischen können Sie das latente Kundenverhalten innerhalb eines bestimmten Zeitraums vor oder nach dem Eintreten eines Ereignisses untersuchen.
Diese Abfrage gibt eine Zahl zurück, die die Zeiteinheit seit der Anzeige des vorherigen übereinstimmenden Ereignisses darstellt. Wenn kein übereinstimmendes Ereignis gefunden wurde, wird null zurückgegeben.
Abfragesyntax
TIME_BETWEEN_PREVIOUS_MATCH(
{TIMESTAMP}, {EVENT_DEFINITION}, {TIME_UNIT})
OVER ({PARTITION} {ORDER} {FRAME})
Parameter | Beschreibung |
---|---|
{TIMESTAMP} |
Ein Zeitstempelfeld im Datensatz, das bei allen Ereignissen aufgefüllt ist. |
{EVENT_DEFINITION} |
Der Ausdruck, der das vorherige Ereignis qualifizieren soll. |
{TIME_UNIT} |
Die Einheit der Ausgabe. Mögliche Werte sind Tage, Stunden, Minuten und Sekunden. Standardmäßig beträgt der Wert Sekunden. |
Eine Erläuterung der Parameter innerhalb der OVER()
-Funktion finden Sie im Abschnitt Bereich für Fensterfunktionen.
Beispielabfrage
SELECT
page_name,
SUM (time_between_previous_match) / COUNT(page_name) as average_minutes_since_registration
FROM
(
SELECT
endUserIds._experience.mcid.id as id,
timestamp, web.webPageDetails.name as page_name,
TIME_BETWEEN_PREVIOUS_MATCH(timestamp, web.webPageDetails.name='Account Registration|Confirmation', 'minutes')
OVER(PARTITION BY endUserIds._experience.mcid.id
ORDER BY timestamp
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS time_between_previous_match
FROM experience_events
)
WHERE time_between_previous_match IS NOT NULL
GROUP BY page_name
ORDER BY average_minutes_since_registration
LIMIT 10
Ergebnisse
page_name | average_minutes_since_registration
-----------------------------------+------------------------------------
|
Account Registration|Confirmation | 0.0
Seasonal | 5.47029702970297
Equipment | 6.532110091743119
Women | 7.287081339712919
Men | 7.640918580375783
Product List | 9.387459807073954
Unlimited Blog|February | 9.954545454545455
Product Details|Buffalo | 13.304347826086957
Unlimited Blog|June | 770.4285714285714
(10 rows)
Die Ergebnisse der angegebenen Beispielabfrage werden im average_minutes_since_registration
Spalte. Der Wert innerhalb der average_minutes_since_registration
ist die Zeitdifferenz zwischen dem aktuellen und vorherigen Ereignis. Die Zeiteinheit wurde zuvor in der Variablen {TIME_UNIT}
.
Diese Abfrage gibt eine negative Zahl zurück, die die Zeiteinheit hinter dem nächsten übereinstimmenden Ereignis darstellt. Wenn kein übereinstimmendes Ereignis gefunden wird, wird null zurückgegeben.
Abfragesyntax
TIME_BETWEEN_NEXT_MATCH({TIMESTAMP}, {EVENT_DEFINITION}, {TIME_UNIT}) OVER ({PARTITION} {ORDER} {FRAME})
Parameter | Beschreibung |
---|---|
{TIMESTAMP} |
Ein Zeitstempelfeld im Datensatz, das bei allen Ereignissen aufgefüllt ist. |
{EVENT_DEFINITION} |
Der Ausdruck, der das nächste Ereignis qualifizieren soll. |
{TIME_UNIT} |
(Optional) Die AusgabEinheit. Mögliche Werte sind Tage, Stunden, Minuten und Sekunden. Standardmäßig beträgt der Wert Sekunden. |
Eine Erläuterung der Parameter innerhalb der OVER()
-Funktion finden Sie im Abschnitt Bereich für Fensterfunktionen.
Beispielabfrage
SELECT
page_name,
SUM (time_between_next_match) / COUNT(page_name) as average_minutes_until_order_confirmation
FROM
(
SELECT
endUserIds._experience.mcid.id as id,
timestamp, web.webPageDetails.name as page_name,
TIME_BETWEEN_NEXT_MATCH(timestamp, web.webPageDetails.name='Shopping Cart|Order Confirmation', 'minutes')
OVER(PARTITION BY endUserIds._experience.mcid.id
ORDER BY timestamp
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING)
AS time_between_next_match
FROM experience_events
)
WHERE time_between_next_match IS NOT NULL
GROUP BY page_name
ORDER BY average_minutes_until_order_confirmation DESC
LIMIT 10
Ergebnisse
page_name | average_minutes_until_order_confirmation
-----------------------------------+------------------------------------------
Shopping Cart|Order Confirmation | 0.0
Men | -9.465295629820051
Equipment | -9.682098765432098
Product List | -9.690661478599221
Women | -9.759459459459459
Seasonal | -10.295
Shopping Cart|Order Review | -366.33567364956144
Unlimited Blog|February | -615.0327868852459
Shopping Cart|Billing Information | -775.6200495367711
Product Details|Buffalo | -1274.9571428571428
(10 rows)
Die Ergebnisse der angegebenen Beispielabfrage werden im average_minutes_until_order_confirmation
Spalte. Der Wert innerhalb der average_minutes_until_order_confirmation
ist die Zeitdifferenz zwischen dem aktuellen und dem nächsten Ereignis. Die Zeiteinheit wurde zuvor in der Variablen {TIME_UNIT}
.
Mithilfe der hier beschriebenen Funktionen können Sie Abfragen erstellen, um auf Ihre Experience Event Datensätze mit Query Service. Weitere Informationen zu Authoring-Abfragen finden Sie unter Query Service, siehe die Dokumentation unter Abfragen erstellen.
Im folgenden Video erfahren Sie, wie Sie Abfragen in der Adobe Experience Platform-Benutzeroberfläche und in einem PSQL-Client ausführen. Darüber hinaus werden im Video auch Beispiele für einzelne Eigenschaften in einem XDM-Objekt verwendet, Adobe-definierte Funktionen verwendet und CREATE TABLE AS SELECT (CTAS) verwendet.