Attribution AI はインテリジェントサービスの一部で、顧客とのやり取りの影響と増分的な効果を指定した成果に照らして計算する、マルチチャネルのアルゴリズムアトリビューションサービスです。アトリビューション AI を使用すると、マーケターは、カスタマージャーニーの各段階における個々の顧客インタラクションの影響を把握することで、マーケティング費用と広告費用を測定し、最適化できます。
このドキュメントは、インテリジェントサービスユーザーインターフェイスの Attribution AI を操作するためのガイドとなります。
内 Adobe Experience Platform UI、「 」を選択します。 サービス をクリックします。 Services ブラウザーが開き、利用可能なアドビのインテリジェントサービスが表示されます。Attribution AIのコンテナで、 開く.
Attribution AI サービスページが表示されます。このページには、Attribution AIのサービスモデルが一覧表示され、モデルの名前、コンバージョンイベント、モデルの実行頻度、最後の更新のステータスなど、モデルに関する情報が表示されます。
次の スコアリングされた合計コンバージョンイベント数 指標は、 モデルを作成 コンテナ。 この指標では、すべてのサンドボックス環境と削除されたサービスモデルを含む、現在の暦年のAttribution AIでスコアリングされたコンバージョンイベントの合計数を追跡します。
UI の右側にあるコントロールを使用して、サービスモデルの編集、複製、削除をおこなうことができます。 これらのコントロールを表示するには、既存の サービスモデル. コントロールには、次の情報が含まれます。
選択 モデルを作成 をクリックして開始します。
次に、Attribution AIの設定ページが表示され、サービスモデルの名前と説明(オプション)を指定できます。
デザインにより、Attribution AIは、Adobe Analytics、エクスペリエンスイベントおよび消費者エクスペリエンスイベントのデータを使用して、アトリビューションスコアを計算できます。 データセットを選択すると、データと互換性のあるAttribution AIのみが表示されます。 データセットを選択するには、+) 記号をクリックするか、チェックボックスを選択して複数のデータセットを一度に追加します。 また、検索オプションを使用して、目的のデータセットをすばやく見つけることもできます。
使用するデータセットを選択した後、 追加 ボタンを使用して、データセットのプレビューペインにデータセットを追加します。
情報アイコンの選択 データセットの横にある「データセットのプレビュー」ポップオーバーが開きます。
データセットのプレビューには、最終更新時間、ソーススキーマ、最初の 10 列のプレビューなどのデータが含まれます。
選択 保存 をクリックして、ワークフローに沿って移動するときに下書きを保存します。 また、ドラフトモデル設定を保存して、ワークフローの次のステップに移動することもできます。 用途 保存して続行 をクリックして、モデル設定時にドラフトを作成し、保存します。 この機能を使用すると、モデル設定のドラフトを作成および保存でき、設定ワークフローで多数のフィールドを定義する必要がある場合に特に便利です。
データセットのプレビューは、データセットの完全性の割合の値です。 この値を使用すると、データセット内の空または null の列数のスナップショットをすばやく取得できます。 データセットに多数の欠落した値が含まれ、その値が他の場所で取り込まれる場合は、欠落した値を含むデータセットを含めることを強くお勧めします。
Attribution AIセットの完全性は、データの最大トレーニング期間(1 年)を使用して計算されます。 つまり、データセットの完全性の値を表示する際に、1 年以上前のデータは考慮されません。
ID マップ(フィールド)に基づいて、複数のデータセットを相互に結合できるようになりました。 ID タイプ(「ID 名前空間」とも呼ばれます)と、その名前空間内の ID 値を選択する必要があります。 同じ名前空間の下で、スキーマ内の ID として複数のフィールドを割り当てた場合、割り当てた ID 値はすべて、名前空間の前に追加された ID ドロップダウンに表示されます(例: )。 EMAIL (personalEmail.address)
または EMAIL (workEmail.address)
.
選択したすべてのデータセットに同じ ID タイプ(名前空間)を使用する必要があります。 ID 列内の ID タイプの横に、互換性のあるデータセットを示す緑のチェックマークが表示されます。 例えば、Phone 名前空間を使用し、 mobilePhone.number
識別子として、残りのデータセットのすべての識別子には Phone 名前空間を含め、使用する必要があります。
ID を選択するには、ID 列にある下線付きの値を選択します。 「 ID の選択」ポップオーバーが表示されます。
1 つの名前空間内で複数の ID を使用できる場合は、使用例に合った正しい ID フィールドを選択するようにしてください。 例えば、電子メール名前空間内では、仕事用と個人用の 2 つの電子メール ID を使用できます。 ユースケースによっては、個人の電子メールが入力される可能性が高く、個々の予測でより役に立つようになります。 これは、「 EMAIL (personalEmail.address)
ID として。
データセットに有効な ID タイプ(名前空間)が存在しない場合は、プライマリ ID を設定し、を使用して ID 名前空間に割り当てる必要があります。 スキーマエディター. 名前空間と ID について詳しくは、 ID サービスの名前空間 ドキュメント。
データセットの選択と追加が完了したら、 マップ 設定手順が表示されます。 Attribution AIは、前の手順で選択した各データセットのメディアチャネルフィールドをマッピングする必要があります。 これは、Attribution AIセット間でメディアチャネルマッピングがおこなわれないと、データから得られたインサイトが適切に表示されず、インサイトページが解釈しにくくなる可能性があるからです。 メディアチャネルのみが必要ですが、「メディアアクション」、「キャンペーン名」、「キャンペーングループ」、「キャンペーンタグ」など、オプションのフィールドの一部をマッピングすることを強くお勧めします。 これにより、Attribution AIはより明確なインサイトと最適な結果を提供できます。
イベントの定義に使用される入力データには、次の 3 種類があります。
コンバージョンイベントを定義するには、イベントに名前を付け、 データセットとフィールドを選択 ドロップダウンメニュー。
イベントを選択すると、新しいドロップダウンが右側に表示されます。2 番目のドロップダウンは、操作を通じてイベントの詳細なコンテキストを指定するために使用します。図中のコンバージョンイベントには、デフォルトの操作 exists が使用されています。
コンバージョン名の下の文字列は、イベントの定義に応じて更新されます。
次に、前の手順で入力データセットをすべて組み合わせて生成する組み合わせデータセットを選択できます。 または、 データセットとフィールドを選択 ドロップダウンメニュー。
コンバージョンをさらに詳しく定義するには、「Add event」ボタンと「Add Group」ボタンを使用します。定義するコンバージョンに応じて、場合によっては、「Add event」ボタンと「Add Group」ボタンを使用して詳細なコンテキストを指定する必要があります。
選択 イベントを追加 は、上記と同じ方法で入力できる追加のフィールドを作成します。 これにより、コンバージョン名の下の文字列定義に AND ステートメントが追加されます。を選択します。 x をクリックして、追加されたイベントを削除します。
選択 グループを追加 には、元のフィールドとは別に追加のフィールドを作成するオプションが用意されています。 グループを追加すると、青い「And」ボタンが表示されます。選択 および には、「Or」を含むようにパラメーターを変更するオプションが与えられます。 「Or」は、成功するコンバージョンパスを複数定義するために使用します。「And」は、コンバージョンパスを拡張して追加の条件を含めるために使用します。
複数のコンバージョンが必要な場合は、「 コンバージョンを追加 新しいコンバージョンカードを作成します。 上記のプロセスを繰り返して、複数のコンバージョンを定義できます。
変換の定義が完了したら、ルックバックウィンドウを確定する必要があります。矢印キーを使用するか、デフォルト値 (56) を選択して、コンバージョンイベントの何日前からのタッチポイントを含めるかを指定します。 タッチポイントは次の手順で定義します。
タッチポイントの定義は、コンバージョンの定義と同様のワークフローに従います。最初に、タッチポイントに名前を付け、フィールド名を入力ドロップダウンメニューからタッチポイント値を選択します。選択したら、演算子のドロップダウンが表示され、「exists」がデフォルト値になっています。ドロップダウンを選択して、演算子のリストを表示します。
図中のタッチポイントには、equals を選択します。
タッチポイントの演算子を選択したら、フィールド名を入力が使用可能になります。フィールド名を入力ドロップダウンに表示される値は、先ほど選択した演算子とタッチポイントの値によって異なります。値がドロップダウンに表示されない場合は、その値を手動で入力できます。ドロップダウンを選択し、「 」を選択します。 クリック.
演算子「exists」と「not exists」には、フィールド値が関連付けられていません。
タッチポイントをさらに詳しく定義するには、「Add event」ボタンと「Add Group」ボタンを使用します。タッチポイントを取り巻く状況は複雑なので、1 つのタッチポイントに対して複数のイベントとグループがあることは珍しくありません。
選択すると、 イベントを追加 「 」を使用すると、追加のフィールドを追加できます。 を選択します。 x をクリックして、追加されたイベントを削除します。
選択 グループを追加 には、元のフィールドとは別に追加のフィールドを作成するオプションが用意されています。 グループを追加すると、青い「And」ボタンが表示されます。選択 および パラメーターを変更するには、新しいパラメーター「Or」を使用して、複数の成功パスを定義します。 図中のタッチポイントには成功パスが 1 つしかないので、「Or」は不要です。
タッチポイント名の下の文字列を使用すると、タッチポイントの概要をすばやく確認できます。なお、この文字列はタッチポイントの名前と一致します。
タッチポイントを追加するには、「 タッチポイントを追加 上記の処理を繰り返します。
必要なタッチポイントの定義がすべて完了したら、上にスクロールして「 」を選択します。 次へ をクリックして、最後の手順に進みます。
Attribution AI の最後のページは、トレーニングとスコアリングの設定に使用する Advanced ページです。
「Schedule」を使用して、スコアリングをおこなう曜日と時刻を選択できます。
の下のドロップダウンを選択します。 スコアリング頻度 を使用して、日別、週別、月別のスコアを選択します。 次に、スコアリングをおこなう曜日を選択します。複数の曜日を選択できます。同じ日を再度選択すると、その日の選択が解除されます。
スコアリングを実行する時刻を変更するには、時計アイコンを選択します。 表示される新しいオーバーレイで、スコアリングをおこなう時刻を入力します。オーバーレイの外側を選択して閉じます。
各スコアリングプロセスが完了するまで、最大 24 時間かかる可能性があります。
デフォルトでは、標準スキーマの各サービスモデルに対してスコアデータセットが作成されます。 コンバージョンイベントとタッチポイントの設定に基づいて、スコアリングデータセットの出力に列を追加することもできます。 まず、入力データセットから列を選択し、ドラッグ&ドロップして、ハンバーガーアイコンの上にマウスの左ボタンを押しながら順序を変更します。
顧客の行動は、国や地域によって大きく異なる場合があります。グローバルビジネスの場合、国ベースまたは地域ベースのモデルを使用すると、アトリビューションの精度が向上する可能性があります。追加された地域ごとに、その地域のデータを使用して新しいモデルを作成します。
新しい地域を定義するには、まず「 」を選択します。 地域の追加. 表示されるコンテナで、地域の名前を入力します。フィールド名を入力ドロップダウンに表示される値は 1 つ(「placeContext.geo.countryCode」)だけです。この値を選択します。
次に、演算子を選択します。
最後に、フィールド名を入力ドロップダウンで国コードを選択します。
国コードの長さは 2 文字です。完全なリストについては、ISO 3166-1 alpha-2 を参照してください。
できるだけ正確なモデルを得るためには、ビジネスを表す履歴データを使用してモデルをトレーニングすることが重要です。デフォルトでは、モデルは、2 四半期(6 ヶ月)分のコンバージョンイベントデータを使用してトレーニングされます。 ドロップダウンを選択すると、デフォルトを変更できます。トレーニングに使用するデータの期間は、1 四半期(3 ヶ月)から 4 四半期(12 ヶ月)の間で選択できます。
トレーニング期間を短くすると、最近のトレンドに対する感度が高くなります。一方、トレーニング期間を長くすると、モデルの堅牢性が高まる反面、最近のトレンドに対する感度が下がります。
トレーニング期間を選択したら、「 」を選択します。 完了 をクリックします。 データの処理に多少時間がかかる場合があります。完了したら、インスタンスの設定が完了したことを確認するポップオーバーダイアログが表示されます。選択 Ok リダイレクト先 サービスインスタンス サービスインスタンスを表示できるページ
このチュートリアルに従って、Attribution AI にサービスインスタンスを正常に作成できました。インスタンスのスコアリングが完了したら(24 時間以内に完了)、Attribution AI インサイトを見つける準備が整います。また、スコアリング結果をダウンロードする場合は、 スコアのダウンロード ドキュメント。
次のビデオでは、Attribution AI内に新しいインスタンスを作成するためのエンドツーエンドのワークフローの概要を説明します。