本文档介绍了Adobe Experience Platform数据科学工作区课程中的预期学习结果。 要查看课程,您必须登录以使用Adobe IDExperience League。
此 面向数据科学家的数据科学工作区快速入门课程 专为数据科学家而设计,这些数据科学家想要了解如何使用JupyterLab Notebooks获取见解和查询数据、创建支持配置文件的数据集、发布自动化机器学习模型,以及对Adobe和非Adobe应用程序激活机器学习见解。
数据科学工作区课程涵盖以下学习结果。 此外,在创建和发布为课程提供的倾向模型时,您可以选择遵循。
数据科学工作区课程分为五节。
简介(19分钟): 了解该课程并大致了解Data Science Workspace,包括所需的课程资产。
在JupyterLab中加载、查询和浏览数据(24分钟): 了解JupyterLab在Experience Platform方面如何帮助简化和便利数据科学家的关键工作流程,例如收集数据、清理数据、可视化数据和发现见解。
在JupyterLab中创建模型(26分钟): 了解如何开始在数据科学工作区中构建模型。
使用数据科学工作区对模型进行训练和评分(6分钟): 了解如何在Experience Platform中创建模型并将其作为服务发布。
使用并提供数据科学见解(11分钟): 了解如何在Real-time Customer Profile中使用Data Science Workspace模型输出,以通过Adobe应用程序和服务提供个性化体验。
完成数据科学工作区课程后,请访问 Sensei机器学习API指南 了解如何利用RESTful API完成您刚刚学到的一切,等等。