Importieren eines gepackten Rezepts in die Benutzeroberfläche von Data Science Workspace

Dieses Tutorial bietet Einblicke in das Konfigurieren und Importieren eines gepackten Rezepts mit dem bereitgestellten Beispiel für Einzelhandelsumsätze. Am Ende dieses Tutorials können Sie ein Modell in Adobe Experience Platform erstellen, trainieren und bewerten Data Science Workspace.

Voraussetzungen

Für dieses Tutorial ist ein gepacktes Rezept in Form einer Docker-Bild-URL erforderlich. Weiterführende Informationen finden Sie im Tutorial zum Verpacken von Quelldateien in einem Rezept.

Workflow in der Benutzeroberfläche

Importieren eines gepackten Rezepts in Data Science Workspace erfordert spezifische Rezeptkonfigurationen, die in einer einzelnen JSON-Datei (JavaScript Object Notation) kompiliert sind. Diese Kompilierung von Rezeptkonfigurationen wird als Konfigurationsdatei bezeichnet. Ein gepacktes Rezept mit einem bestimmten Satz von Konfigurationen wird als Rezeptinstanz bezeichnet. Ein Rezept kann verwendet werden, um viele Rezeptinstanzen in Data Science Workspace.

Der Workflow zum Importieren eines gepackten Rezepts umfasst folgende Schritte:

Rezept konfigurieren

Jede Rezeptinstanz in Data Science Workspace wird mit einer Reihe von Konfigurationen ergänzt, die die Rezeptinstanz an einen bestimmten Anwendungsfall anpassen. Konfigurationsdateien definieren das standardmäßige Trainings- und Scoring-Verhalten eines mit dieser Rezeptinstanz erstellten Modells.

HINWEIS

Konfigurationsdateien sind rezept- und fallspezifisch.

Im Folgenden finden Sie eine Beispielkonfigurationsdatei mit standardmäßigem Trainings- und Scoring-Verhalten für das Rezept „Einzelhandelsumsätze“.

[
    {
        "name": "train",
        "parameters": [
            {
                "key": "learning_rate",
                "value": "0.1"
            },
            {
                "key": "n_estimators",
                "value": "100"
            },
            {
                "key": "max_depth",
                "value": "3"
            },
            {
                "key": "ACP_DSW_INPUT_FEATURES",
                "value": "date,store,storeType,storeSize,temperature,regionalFuelPrice,markdown,cpi,unemployment,isHoliday"
            },
            {
                "key": "ACP_DSW_TARGET_FEATURES",
                "value": "weeklySales"
            },
            {
                "key": "ACP_DSW_FEATURE_UPDATE_SUPPORT",
                "value": false
            },
            {
                "key": "tenantId",
                "value": "_{TENANT_ID}"
            },
            {
                "key": "ACP_DSW_TRAINING_XDM_SCHEMA",
                "value": "{SEE BELOW FOR DETAILS}"
            },
            {
                "key": "evaluation.labelColumn",
                "value": "weeklySalesAhead"
            },
            {
                "key": "evaluation.metrics",
                "value": "MAPE,MAE,RMSE,MASE"
            }
        ]
    },
    {
        "name": "score",
        "parameters": [
            {
                "key": "tenantId",
                "value": "_{TENANT_ID}"
            },
            {
                "key":"ACP_DSW_SCORING_RESULTS_XDM_SCHEMA",
                "value":"{SEE BELOW FOR DETAILS}"
            }
        ]
    }
]
Parameterschlüssel Typ Beschreibung
learning_rate Zahl Skalar für graduelle Multiplikation.
n_estimators Zahl Zahl der Bäume im Wald für Random Forest Classifier.
max_depth Zahl Maximale Tiefe eines Baums in Random Forest Classifier.
ACP_DSW_INPUT_FEATURES Zeichenfolge Liste mit kommagetrennten Eingabeschemaattributen.
ACP_DSW_TARGET_FEATURES Zeichenfolge Liste mit kommagetrennten Ausgabeschemaattributen.
ACP_DSW_FEATURE_UPDATE_SUPPORT Boolesch Legt fest, ob Eingabe- und Ausgabefunktionen geändert werden können.
tenantId Zeichenfolge Diese Kennung stellt sicher, dass die von Ihnen erstellten Ressourcen den richtigen Namespace erhalten und in Ihrer IMS-Organisation enthalten sind. Gehen Sie wie folgt vor, um Ihre Mandantenkennung zu suchen.
ACP_DSW_TRAINING_XDM_SCHEMA Zeichenfolge Das zum Trainieren eines Modells verwendete Eingabeschema. Lassen Sie es beim Importieren in der Benutzeroberfläche leer; ersetzen Sie es beim Importieren mit der API durch die Trainings-SchemaID.
evaluation.labelColumn Zeichenfolge Spaltenbezeichnung für Bewertungsvisualisierungen.
evaluation.metrics Zeichenfolge Kommagetrennte Liste mit Bewertungsmetriken, die zur Bewertung eines Modells verwendet werden.
ACP_DSW_SCORING_RESULTS_XDM_SCHEMA Zeichenfolge Das zum Scoring eines Modells verwendete Ausgabeschema. Lassen Sie es beim Importieren in der Benutzeroberfläche leer; ersetzen Sie es beim Importieren mit der API durch die Scoring-SchemaID.

Für diese Anleitung können Sie die Standardkonfigurationsdateien für das Rezept "Einzelhandelsumsätze"im Data Science Workspace Verweisen Sie auf ihre Art.

Docker-basiertes Rezept importieren - Python

Beginnen durch Navigieren und Auswählen Workflows oben links im Platform Benutzeroberfläche. Wählen Sie als Nächstes Rezept importieren und wählen Sie Launch.

Die Konfigurieren Seite für die Rezept importieren Workflow angezeigt. Geben Sie einen Namen und eine Beschreibung für das Rezept ein und wählen Sie Nächste in der oberen rechten Ecke.

Workflow konfigurieren

HINWEIS

Im Tutorial Quelldateien in einem Rezept verpacken wurde nach der Erstellung des Rezepts für Einzelhandelsumsätze mit Python-Quelldateien eine Docker-URL bereitgestellt.

Sobald Sie auf dem Quelle auswählen Fügen Sie die Docker-URL ein, die dem gepackten Rezept entspricht, das mit Python Quelldateien in der Quell-URL -Feld. Importieren Sie anschließend die bereitgestellte Konfigurationsdatei per Drag-and-Drop oder mit dem Browser des Dateisystems. Die bereitgestellte Konfigurationsdatei finden Sie unter experience-platform-dsw-reference/recipes/python/retail/retail.config.json. Auswählen Python im Laufzeit und Klassifizierung im Typ angezeigt. Nachdem alles ausgefüllt wurde, wählen Sie Nächste in der oberen rechten Ecke, um fortzufahren Schemata verwalten.

HINWEIS

Typ unterstützt Klassifizierung und Regression. Wenn Ihr Modell nicht unter einen dieser Typen fällt, wählen Sie Benutzerdefiniert.

Wählen Sie als Nächstes die Eingabe- und Ausgabeschemata für Einzelhandelsumsätze im Abschnitt aus. Verwalten von Schemas, wurden sie mit dem bereitgestellten Bootstrap-Skript im Schema und Datensatz für Einzelhandelsumsätze erstellen Tutorial.

Unter dem Funktionsverwaltung Wählen Sie in der Schema-Ansicht Ihrer Mandantenkennung aus, um das Eingabeschema für Einzelhandelsumsätze zu erweitern. Wählen Sie die Ein- und Ausgabefunktionen aus, indem Sie die gewünschte Funktion markieren und entweder die Option Eingabefunktion oder Zielfunktion im rechten Fenster Feldeigenschaften auswählen. Legen Sie in diesem Tutorial weeklySales als Zielfunktion und alles andere als Eingabefunktion fest. Auswählen Nächste , um Ihr neues konfiguriertes Rezept zu überprüfen.

Prüfen Sie das Rezept und fügen Sie je nach Bedarf Konfigurationen hinzu bzw. ändern oder entfernen Sie sie. Auswählen Beenden , um das Rezept zu erstellen.

Fahren Sie mit dem Nächste Schritte , um zu erfahren, wie Sie ein Modell in Data Science Workspace unter Verwendung des neu erstellten Rezepts für Einzelhandelsumsätze.

Docker-basiertes Rezept importieren – R

Beginnen durch Navigieren und Auswählen Workflows oben links im Platform Benutzeroberfläche. Wählen Sie als Nächstes Rezept importieren und wählen Sie Launch.

Die Konfigurieren Seite für die Rezept importieren Workflow angezeigt. Geben Sie einen Namen und eine Beschreibung für das Rezept ein und wählen Sie Nächste in der oberen rechten Ecke.

Workflow konfigurieren

HINWEIS

Im Tutorial Quelldateien in einem Rezept verpacken wurde nach der Erstellung des Rezepts für Einzelhandelsumsätze mit R-Quelldateien eine Docker-URL bereitgestellt.

Sobald Sie auf dem Quelle auswählen Fügen Sie die Docker-URL, die dem mit R-Quelldateien erstellten gepackten Rezept entspricht, in die Quell-URL -Feld. Importieren Sie anschließend die bereitgestellte Konfigurationsdatei per Drag-and-Drop oder mit dem Browser des Dateisystems. Die bereitgestellte Konfigurationsdatei finden Sie unter experience-platform-dsw-reference/recipes/R/Retail\ -\ GradientBoosting/retail.config.json. Auswählen R im Laufzeit und Klassifizierung im Typ angezeigt. Nachdem alles ausgefüllt wurde, wählen Sie Nächste in der oberen rechten Ecke, um fortzufahren Schemata verwalten.

HINWEIS

Typ unterstützt Klassifizierung und Regression. Wenn Ihr Modell nicht unter einen dieser Typen fällt, wählen Sie Benutzerdefiniert.

Wählen Sie als Nächstes die Eingabe- und Ausgabeschemata für Einzelhandelsumsätze im Abschnitt aus. Verwalten von Schemas, wurden sie mit dem bereitgestellten Bootstrap-Skript im Schema und Datensatz für Einzelhandelsumsätze erstellen Tutorial.

Unter dem Funktionsverwaltung Wählen Sie in der Schema-Ansicht Ihrer Mandantenkennung aus, um das Eingabeschema für Einzelhandelsumsätze zu erweitern. Wählen Sie die Ein- und Ausgabefunktionen aus, indem Sie die gewünschte Funktion markieren und entweder die Option Eingabefunktion oder Zielfunktion im rechten Fenster Feldeigenschaften auswählen. Legen Sie in diesem Tutorial weeklySales als Zielfunktion und alles andere als Eingabefunktion fest. Auswählen Nächste , um Ihr neues konfiguriertes Rezept zu überprüfen.

Prüfen Sie das Rezept und fügen Sie je nach Bedarf Konfigurationen hinzu bzw. ändern oder entfernen Sie sie. Auswählen Beenden , um das Rezept zu erstellen.

Fahren Sie mit dem Nächste Schritte , um zu erfahren, wie Sie ein Modell in Data Science Workspace unter Verwendung des neu erstellten Rezepts für Einzelhandelsumsätze.

Docker-basiertes Rezept importieren - PySpark

Beginnen durch Navigieren und Auswählen Workflows oben links im Platform Benutzeroberfläche. Wählen Sie als Nächstes Rezept importieren und wählen Sie Launch.

Die Konfigurieren Seite für die Rezept importieren Workflow angezeigt. Geben Sie einen Namen und eine Beschreibung für das Rezept ein und wählen Sie Nächste in der oberen rechten Ecke, um fortzufahren.

Workflow konfigurieren

HINWEIS

Im Quelldateien in einem Rezept verpacken Tutorial wurde nach der Erstellung des Rezepts für Einzelhandelsumsätze mit PySpark-Quelldateien eine Docker-URL bereitgestellt.

Sobald Sie auf dem Quelle auswählen Fügen Sie die Docker-URL, die dem mit PySpark-Quelldateien erstellten gepackten Rezept entspricht, in die Quell-URL -Feld. Importieren Sie anschließend die bereitgestellte Konfigurationsdatei per Drag-and-Drop oder mit dem Browser des Dateisystems. Die bereitgestellte Konfigurationsdatei finden Sie unter experience-platform-dsw-reference/recipes/pyspark/retail/pipeline.json. Auswählen PySpark im Laufzeit angezeigt. Sobald die PySpark-Laufzeit ausgewählt ist, wird das standardmäßige Artefakt automatisch in Docker. Wählen Sie als Nächstes Klassifizierung im Typ angezeigt. Nachdem alles ausgefüllt wurde, wählen Sie Nächste in der oberen rechten Ecke, um fortzufahren Schemata verwalten.

HINWEIS

Typ unterstützt Klassifizierung und Regression. Wenn Ihr Modell nicht unter einen dieser Typen fällt, wählen Sie Benutzerdefiniert.

Wählen Sie als Nächstes die Eingabe- und Ausgabeschemata für Einzelhandelsumsätze mit der Verwalten von Schemas -Selektor, wurden die Schemas mit dem bereitgestellten Bootstrap-Skript im Schema und Datensatz für Einzelhandelsumsätze erstellen Tutorial.

Schemas verwalten

Unter dem Funktionsverwaltung Wählen Sie in der Schema-Ansicht Ihrer Mandantenkennung aus, um das Eingabeschema für Einzelhandelsumsätze zu erweitern. Wählen Sie die Ein- und Ausgabefunktionen aus, indem Sie die gewünschte Funktion markieren und entweder die Option Eingabefunktion oder Zielfunktion im rechten Fenster Feldeigenschaften auswählen. Legen Sie in diesem Tutorial weeklySales als Zielfunktion und alles andere als Eingabefunktion fest. Auswählen Nächste , um Ihr neues konfiguriertes Rezept zu überprüfen.

Prüfen Sie das Rezept und fügen Sie je nach Bedarf Konfigurationen hinzu bzw. ändern oder entfernen Sie sie. Auswählen Beenden , um das Rezept zu erstellen.

Fahren Sie mit dem Nächste Schritte , um zu erfahren, wie Sie ein Modell in Data Science Workspace unter Verwendung des neu erstellten Rezepts für Einzelhandelsumsätze.

Docker-basiertes Rezept importieren - Scala

Beginnen durch Navigieren und Auswählen Workflows oben links im Platform Benutzeroberfläche. Wählen Sie als Nächstes Rezept importieren und wählen Sie Launch.

Die Konfigurieren Seite für die Rezept importieren Workflow angezeigt. Geben Sie einen Namen und eine Beschreibung für das Rezept ein und wählen Sie Nächste in der oberen rechten Ecke, um fortzufahren.

Workflow konfigurieren

HINWEIS

Im Quelldateien in einem Rezept verpacken Tutorial wurde eine Docker-URL am Ende der Erstellung des Rezepts für Einzelhandelsumsätze mit Scala bereitgestellt (Spark) Quelldateien.

Sobald Sie auf dem Quelle auswählen Fügen Sie die Docker-URL, die dem mit Scala-Quelldateien erstellten gepackten Rezept entspricht, in das Feld Quell-URL ein. Importieren Sie anschließend die bereitgestellte Konfigurationsdatei per Drag-and-Drop oder mit dem Browser des Dateisystems. Die bereitgestellte Konfigurationsdatei finden Sie unter experience-platform-dsw-reference/recipes/scala/retail/pipelineservice.json. Auswählen Spark im Laufzeit angezeigt. Einmal Spark Laufzeit ausgewählt ist, wird das standardmäßige Artefakt automatisch in Docker. Wählen Sie als Nächstes Regression von Typ angezeigt. Nachdem alles ausgefüllt wurde, wählen Sie Nächste in der oberen rechten Ecke, um fortzufahren Schemata verwalten.

HINWEIS

Typ unterstützt Klassifizierung und Regression. Wenn Ihr Modell nicht unter einen dieser Typen fällt, wählen Sie Benutzerdefiniert.

Wählen Sie als Nächstes die Eingabe- und Ausgabeschemata für Einzelhandelsumsätze mit der Verwalten von Schemas -Selektor, wurden die Schemas mit dem bereitgestellten Bootstrap-Skript im Schema und Datensatz für Einzelhandelsumsätze erstellen Tutorial.

Schemas verwalten

Unter dem Funktionsverwaltung Wählen Sie in der Schema-Ansicht Ihrer Mandantenkennung aus, um das Eingabeschema für Einzelhandelsumsätze zu erweitern. Wählen Sie die Ein- und Ausgabefunktionen aus, indem Sie die gewünschte Funktion markieren und entweder die Option Eingabefunktion oder Zielfunktion im rechten Fenster Feldeigenschaften auswählen. Legen Sie für diese Anleitung Folgendes fest:weeklySales" als Target-Funktion und alles andere als Eingabefunktion. Auswählen Nächste , um Ihr neues konfiguriertes Rezept zu überprüfen.

Prüfen Sie das Rezept und fügen Sie je nach Bedarf Konfigurationen hinzu bzw. ändern oder entfernen Sie sie. Auswählen Beenden , um das Rezept zu erstellen.

Fahren Sie mit dem Nächste Schritte , um zu erfahren, wie Sie ein Modell in Data Science Workspace unter Verwendung des neu erstellten Rezepts für Einzelhandelsumsätze.

Nächste Schritte

Dieses Tutorial bietet Einblicke in die Konfiguration und den Import eines Rezepts in Data Science Workspace. Jetzt können Sie mit dem neu erstellten Rezept ein Modell erstellen, trainieren und bewerten.

Auf dieser Seite