In diesem Tutorial erhalten Sie die Voraussetzungen und Assets, die für alle anderen Adobe Experience Platform Data Science Workspace Tutorials. Nach Abschluss sind das Schema und die Datensätze für Einzelhandelsumsätze für Sie und Mitglieder Ihrer Organisation verfügbar auf Experience Platform.
Bevor Sie mit diesem Tutorial beginnen, müssen Sie folgende Voraussetzungen erfüllen:
{ACCESS_TOKEN}
{API_KEY}
{ORG_ID}
{CLIENT_SECRET}
{PRIVATE_KEY}
Das Schema und die Datensätze für Einzelhandelsumsätze werden mithilfe des bereitgestellten Bootstrap-Skripts automatisch erstellt. Führen Sie folgende Schritte in der richtigen Reihenfolge aus:
Innerhalb des Experience Platform Tutorial-Ressourcenpaket, navigieren Sie zum Ordner bootstrap
und öffnen config.yaml
mit einem entsprechenden Texteditor.
Geben Sie unter dem Abschnitt Enterprise
die folgenden Werte ein:
Enterprise:
api_key: {API_KEY}
org_id: {ORG_ID}
tech_acct: {technical_account_id}
client_secret: {CLIENT_SECRET}
priv_key_filename: {PRIVATE_KEY}
Bearbeiten Sie die Werte, die Sie im Abschnitt Platform
finden, wie im folgenden Beispiel:
Platform:
platform_gateway: https://platform.adobe.io
ims_token: {ACCESS_TOKEN}
ingest_data: "True"
build_recipe_artifacts: "False"
kernel_type: Python
platform_gateway
: Der Basispfad für API-Aufrufe. Ändern Sie diesen Wert nicht.ims_token
: Ihr {ACCESS_TOKEN}
gehört hier hin.ingest_data
: Setzen Sie für diese Anleitung den Wert auf "True"
, um die Schemas und Datensätze für Einzelhandelsumsätze zu erstellen. Beim Wert "False"
werden nur die Schemas erstellt.build_recipe_artifacts
: Setzen Sie für diese Anleitung den Wert auf "False"
, um zu verhindern, dass das Skript ein Rezeptartefakt generiert.kernel_type
: Der Ausführungstyp des Rezeptartefakts. Lassen Sie diesen Wert unverändert bei Python
, wenn build_recipe_artifacts
auf "False"
gesetzt ist; geben Sie andernfalls den entspechenden Ausführungstyp an.Geben Sie unter dem Abschnitt Titles
die folgenden Informationen für die Beispieldaten der Einzelhandelsumsätze ein; speichern und schließen Sie die Datei, nachdem Sie die Änderungen vorgenommen haben. Beispiel:
Titles:
input_class_title: retail_sales_input_class
input_mixin_title: retail_sales_input_mixin
input_mixin_definition_title: retail_sales_input_mixin_definition
input_schema_title: retail_sales_input_schema
input_dataset_title: retail_sales_input_dataset
file_replace_tenant_id: DSWRetailSalesForXDM0.9.9.9.json
file_with_tenant_id: DSWRetailSales_with_tenant_id.json
is_output_schema_different: "True"
output_mixin_title: retail_sales_output_mixin
output_mixin_definition_title: retail_sales_output_mixin_definition
output_schema_title: retail_sales_output_title
output_dataset_title: retail_sales_output_dataset
Öffnen Sie die Terminal-Anwendung und navigieren Sie zum Experience Platform Tutorial-Ressourcenverzeichnis.
Legen Sie die bootstrap
Verzeichnis als aktuellen Arbeitspfad und führen Sie die bootstrap.py
Python Skript durch Eingabe des folgenden Befehls:
python bootstrap.py
Das Skript kann mehrere Minuten in Anspruch nehmen.
Nach erfolgreichem Abschluss des Bootstrap-Skripts können die Ein- und Ausgabeschemas und -datensätze für Einzelhandelsumsätze angezeigt werden unter Experience Platform. Weiterführende Informationen finden Sie in der Anleitung zum Anzeigen einer Vorschau von Schemadaten.
Sie haben auch erfolgreich Beispieldaten für Einzelhandelsumsätze in Experience Platform mithilfe des bereitgestellten Bootstrap-Skripts.
So arbeiten Sie weiter mit den aufgenommenen Daten: