Vous pouvez utiliser une visualisation de flux avec la dimension Type de périphérique mobile.
L’utilisation du type d’équipement mobile comme illustré ci-dessus vous permet de voir comment les utilisateurs passent d’un type de périphérique mobile à un type de périphérique de bureau. Toutefois, il ne vous permet pas de distinguer les navigateurs de bureau des navigateurs mobiles. Si vous souhaitez obtenir ces informations, vous pouvez créer une variable personnalisée (une prop ou une eVar, par exemple) qui enregistre si l’expérience s’est produite sur un navigateur de bureau, un navigateur mobile ou une application mobile. Vous pouvez ensuite créer un diagramme Flux comme décrit ci-dessus, à l’aide de la variable personnalisée au lieu de la dimension Type d’équipement mobile. Cela permet de disposer d’une vue légèrement différente du comportement sur plusieurs périphériques.
Lʼassemblage entre appareils des analyses entre appareils (CDA) se produit dans deux processus simultanés.
Le premier processus, nommé « assemblage dynamique », se produit quand les données arrivent en flux continu dans Adobe Analytics. Pendant lʼassemblage dynamique, les CDA sʼefforcent de retraiter les données au niveau de la personne. Cependant, si la personne est inconnue lors de lʼassemblage dynamique, les CDA reviennent à lʼidentifiant visiteur pour représenter la personne.
Le second processus est nommé « relecture ». Au cours de la relecture, les CDA remontent dans le temps et retraitent les données historiques, si possible, au cours dʼun intervalle de recherche en amont spécifié. Cet intervalle de recherche en amont est soit de 1 jour, soit de 7 jours, selon la configuration choisie pour les CDA. Au cours de la relecture, les CDA tentent de retraiter les accès où la personne était précédemment inconnue.
Si vous utilisez un graphique d’appareil, Adobe conserve les mappages de l’appareil dans le graphique Co-op et le graphique Privé pendant environ 6 mois. Un ECID sans activité depuis plus de six mois est supprimé du graphique. Les données déjà recoupées dans les analyses entre appareils ne sont pas affectées, mais les accès ultérieurs pour cet ECID sont considérés comme une nouvelle personne.
Adobe traite les accès horodatés comme s’ils avaient été reçus au moment de l’horodatage et non lorsqu’Adobe a reçu l’accès. Les accès horodatés de plus d’un mois ne sont jamais regroupés, car ils ne sont pas compris dans la plage utilisée par Adobe pour le groupement.
L’utilisation d’un identifiant visiteur personnalisé est une méthode héritée qui permet de connecter des utilisateurs sur plusieurs appareils. Avec un identifiant visiteur personnalisé, vous utilisez la variable visitorID
pour définir explicitement l’identifiant utilisé pour la logique du visiteur. La variable visitorID
remplace les éventuels identifiants basés sur les cookies en présence.
Les identifiants visiteur personnalisés ont plusieurs effets secondaires indésirables que les Analyses entre appareils surmontent ou minimisent. Par exemple, la méthodologie d’identifiant visiteur personnalisé ne comporte aucune fonctionnalité de relecture. Si un utilisateur s’authentifie au milieu d’une visite, la première partie de la visite s’associe à un autre identifiant visiteur que celui de la seconde partie de la visite. Les identifiants visiteur séparés génèrent un gonflement des visites et des visiteurs. Les analyses entre appareils indiquent à nouveau les données historiques de sorte que les accès non authentifiés appartiennent à la bonne personne.
Les clients qui utilisent déjà un identifiant visiteur personnalisé peuvent effectuer une mise à niveau vers les analyses entre appareils sans aucune modification de l’implémentation. La variable visitorID
est toujours utilisée dans la suite de rapports source. Cependant, les analyses entre appareils ignorent la variable visitorID
dans la suite de rapports virtuelle si un utilisateur s’authentifie.
Dans certains cas, il est possible que plusieurs personnes se connectent à partir du même appareil. Par exemple, un appareil partagé à la maison, des ordinateurs partagés dans une bibliothèque ou un kiosque dans un magasin de vente au détail.
Dans certains cas, un utilisateur individuel peut s’associer à un grand nombre d’ECID. Cela peut se produire s’il utilise un grand nombre de navigateurs ou d’applications et peut être exacerbé s’il lui arrive régulièrement de supprimer les cookies ou d’utiliser le mode de navigation privé ou incognito du navigateur.
Les mesures Personnes et Visiteurs uniques visent toutes deux à comptabiliser des visiteurs distincts (individus). Toutefois, envisagez la possibilité que 2 appareils différents peuvent appartenir à la même personne. Les analyses entre appareils mappent les 2 appareils à la même personne, tandis que les 2 appareils sont enregistrés en tant que 2 « visiteurs uniques » distincts en dehors des analyses entre appareils.
Ces deux mesures sont à peu près équivalentes. Des différences entre les 2 mesures se produisent lorsque :
Voir la rubrique Appareils uniques pour plus d’exemples et de détails sur son fonctionnement.
Oui. Analysis Workspace utilise l’API 2.0 pour demander des données aux serveurs Adobe et vous pouvez afficher les appels d’API qu’Adobe utilise pour créer vos propres rapports :
Oui. Si une personne envoie des accès à partir de deux appareils distincts dans le délai d’expiration de visite de votre suite de rapports virtuelle (30 minutes par défaut), ils sont regroupés au sein de la même visite.
Ces deux identifiants sont calculés par Adobe au moment de l’exécution du rapport, également appelé Traitement de la période de rapport. La nature du traitement de la période de rapport signifie qu’il n’est pas compatible avec Data Warehouse, les flux de données ou d’autres fonctionnalités d’exportation des offres Adobe.
Passer du graphique d’appareil au groupement basé sur les champs et inversement peut être demandé via l’assistance clientèle. Cependant, la réalisation d’un tel changement peut prendre quelques semaines ou plus encore et les données historiques regroupées de la méthode précédente sont perdues.
Les analyses entre appareils extraient les éléments de dimension des variables avant de les optimiser pour le compte-rendu des performances. Vous n’avez pas à vous inquiéter des limites uniques à des fins d’analyses entre appareils. Cependant, si vous avez essayé d’utiliser cette prop/eVar dans un projet Workspace, vous pouvez toujours voir l’élément de dimension (Faible trafic).
À compter du 1er mai 2022, toute nouvelle implémentation d’Analytics sur l’ensemble des appareils sera limitée à un maximum de trois identifiants de suite de rapports (RSID) par client. Les analyses entre appareils ne fusionnent pas les suites de rapports. Chaque suite de rapports activée pour les analyses entre appareils doit être entre appareils par définition et contenir des données provenant de plusieurs surfaces telles que le Web bureau, le Web mobile, l’application mobile, etc…
Non. Pour le même ID d’organisation, une seule zone géographique peut avoir Analytics sur l’ensemble des appareils activé.
L’avantage de l’intervalle de recherche en amont de la relecture de sept jours est que les analyses entre appareils peuvent revenir plus loin dans le temps pour essayer d’associer des événements qui étaient alors anonymes à une personne qui s’est connectée plus tard au cours de ces sept jours. Les inconvénients de l’intervalle de recherche en amont de sept jours sont les suivants : 1) la relecture ne s’exécute qu’une fois par semaine et 2) les sept derniers jours peuvent faire l’objet de modifications.
Les avantages à utiliser l’intervalle de recherche en amont de la relecture en un jour sont les suivants : 1) la relecture s’exécute tous les jours et 2) seulement le jour d’avant peut faire l’objet de modifications. L’inconvénient de l’intervalle de recherche en amont d’un jour est que les analyses entre appareils ne peuvent revenir qu’un jour en arrière pour essayer d’associer des événements qui étaient alors anonymes à une personne qui s’est connectée hier.
Si un client passe à une version inférieure d’Ultimate, il n’aura plus accès aux données groupées. Toutes les données précédemment regroupées seront supprimées. Cela signifie que les suites de rapports virtuelles des analyses entre appareils ne reflèteront plus aucun regroupement entre appareils. Les données ressembleront à la suite de rapports non regroupés originale.
Les analyses entre appareils utilisent un pipeline de traitement parallèle complexe, avec de multiples composants dépendants. Il faut sʼattendre à une discordance de données dʼenviron 1 % pour le nombre total dʼaccès entre la suite de rapports dʼorigine et la suite de rapports virtuelle dʼAnalytics sur lʼensemble des appareils.
Le nombre de la mesure « Personnes identifiées » peut être légèrement plus élevé si la valeur de l’identifiant prop/eVar s’exécute dans une collision de hachage.
Pour le groupement basé sur les champs, la variable personnalisée de lʼidentifiant est sensible à la casse. La valeur de la mesure « Personnes identifiées » peut être considérablement plus élevée si les valeurs des identifiants ne correspondent pas à la casse. Par exemple, si bob
et Bob
sont envoyés par une seule et même personne, l’Analyse entre appareils interprète ces deux valeurs comme distinctes.
Cette situation se produit généralement lorsquʼun visiteur génère des accès authentifiés et non authentifiés dans la fenêtre du compte rendu des performances. Le visiteur appartient à la fois à « Non identifié » et à « Identifié » dans la dimension État identifié, ce qui entraîne lʼattribution dʼaccès non identifiés à un identifiant. Ce scénario peut évoluer après lʼexécution de la Relecture, en fonction de la fréquence de relecture et du taux de réussite.