Insights-Endpunkt

NOTE
Data Science Workspace ist nicht mehr erhältlich.
Diese Dokumentation richtet sich an Bestandskunden mit vorherigen Berechtigungen für Data Science Workspace.

Insights bieten Metriken, mit denen Datenwissenschaftler durch Anzeige relevanter Auswertungsmetriken optimale ML-Modelle ermitteln und auswählen können.

Liste mit Insights abrufen

Sie können eine Liste mit Insights abrufen, indem Sie eine GET-Anfrage an den Insights-Endpunkt richten. Sie können die Ergebnisse filtern, indem Sie im Anfragepfad Abfrageparameter angeben. Eine Liste der verfügbaren Abfragen finden Sie im Anhang zu den Abfrageparametern für den Asset-Abruf.

API-Format

GET /insights

Anfrage

curl -X GET \
  https://platform.adobe.io/data/sensei/insights \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Antwort

Eine erfolgreiche Antwort gibt eine Payload zurück, die eine Liste mit Insights enthält, wobei jeder Insight eine eindeutige Kennung (id) aufweist. Darüber hinaus erhalten Sie context (Kontext), der die eindeutigen Kennungen enthält, die mit diesem bestimmten Insight verknüpft sind, gefolgt von den Insights-Ereignissen und Metrikdaten.

{
    "children": [
        {
            "id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
            "context": {
                "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
                "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
                "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
            },
            "events": {
                "name": "fit",
                "eventValues": {
                    "algorithm": null,
                    "ratio": "0.8"
                }
            },
            "metrics": [
                {
                    "name": "MAPE",
                    "value": "0.0111111111111",
                    "valueType": "double"
                }
            ],
            "created": "2019-01-01T00:00:00.000Z",
            "updated": "2019-01-02T00:00:00.000Z"
        },
        {
            "id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
            "context": {
                "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
                "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
                "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
            },
            "events": {
                "name": "fit",
                "eventValues": {
                    "algorithm": null,
                    "ratio": "0.8"
                }
            },
            "metrics": [
                {
                    "name": "MAPE",
                    "value": "0.0111111111111",
                    "valueType": "double"
                }
            ],
            "created": "2019-01-01T00:00:00.000Z",
            "updated": "2019-01-02T00:00:00.000Z"
            }
        ],
    "_page": {
        "count": 2
    }
}
Eigenschaft
Beschreibung
id
Die Kennung, die dem Insight entspricht.
experimentId
Eine gültige Experiment-ID.
experimentRunId
Eine gültige Experimentablauf-ID.
modelId
Eine gültige Modellkennung.

Bestimmten Insight abrufen

Um einen bestimmten Insight nachzuschlagen, stellen Sie eine GET-Anfrage und geben Sie im Anfragepfad eine gültige {INSIGHT_ID} an. Sie können die Ergebnisse filtern, indem Sie im Anfragepfad Abfrageparameter angeben. Eine Liste der verfügbaren Abfragen finden Sie im Anhang zu den Abfrageparametern für den Asset-Abruf.

API-Format

GET /insights/{INSIGHT_ID}
Parameter
Beschreibung
{INSIGHT_ID}
Die eindeutige Kennung eines Sensei-Insight.

Anfrage

curl -X GET \
  https://platform.adobe.io/data/sensei/insights/08b8d174-6b0d-4d7e-acd8-1c4c908e14b2 \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Antwort

Eine erfolgreiche Antwort gibt eine Payload zurück, die die eindeutige Kennung (id) des Insight umfasst. Darüber hinaus erhalten Sie context (Kontext), der die eindeutigen Kennungen enthält, die mit diesem bestimmten Insight verknüpft sind, gefolgt von den Insights-Ereignissen und Metrikdaten.

{
    "id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
    "context": {
        "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
        "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
        "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
    },
    "events": {
        "name": "fit",
        "eventValues": {
            "algorithm": null,
            "ratio": "0.8"
        }
    },
    "metrics": [
        {
            "name": "MAPE",
            "value": "0.0111111111111",
            "valueType": "double"
        }
    ],
    "created": "2019-01-01T00:00:00.000Z",
    "updated": "2019-01-02T00:00:00.000Z"
}
Eigenschaft
Beschreibung
id
Die Kennung, die dem Insight entspricht.
experimentId
Eine gültige Experiment-ID.
experimentRunId
Eine gültige Experimentablauf-ID.
modelId
Eine gültige Modellkennung.

Neuen Modell-Insight hinzufügen

Sie können einen neuen Modell-Insight erstellen, indem Sie eine POST-Anfrage und eine Payload ausführen, die Kontext, Ereignisse und Metriken für den neuen Modell-Insight bereitstellt. Das zum Erstellen eines neuen Modell-Insight verwendete Kontextfeld muss nicht mit vorhandenen Diensten verknüpft sein. Sie können den neuen Modell-Insight jedoch mit vorhandenen Diensten erstellen, indem Sie eine oder mehrere der entsprechenden Kennungen angeben:

"context": {
    "clientId": "f1ab3164-e688-433d-99ef-077b2be84731",
    "notebookId": "T4ab3164-e658-443d-97ef-022b2be84999",
    "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
    "engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
    "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71",
    "dataSetId": "5ee3cd7f2d34011913c56941"
  }

API-Format

POST /insights

Anfrage

curl -X POST \
  https://platform.adobe.io/data/sensei/insights \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'
    -H `Content-Type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json`
    -d {
    "context": {
        "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
        "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
        "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
    },
    "events": {
        "name": "fit2",
        "eventValues": {
            "algorithm": null,
            "ratio": "0.99"
        }
    },
    "metrics": [
        {
            "name": "MAPE2",
            "value": "0.11111111111",
            "valueType": "double"
        }
    ],
    "created": "2019-01-01T00:00:00.000Z",
    "updated": "2019-01-02T00:00:00.000Z"
}

Antwort

Eine erfolgreiche Antwort gibt eine Payload zurück, die über eine {INSIGHT_ID} und alle Parameter verfügt, die Sie in der ursprünglichen Anfrage angegeben haben.

{
    "id": "08b8d174-6b0d-4d7e-acd8-1c4c908e14b2",
    "context": {
        "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
        "experimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
        "modelId": "15c53796-bd6b-4e09-b51d-7296aa20af71"
    },
    "events": {
        "name": "fit2",
        "eventValues": {
            "algorithm": null,
            "ratio": "0.99"
        }
    },
    "metrics": [
        {
            "name": "MAPE2",
            "value": "0.11111111111",
            "valueType": "double"
        }
    ],
    "created": "2019-01-01T00:00:00.000Z",
    "updated": "2019-01-02T00:00:00.000Z"
}
Eigenschaft
Beschreibung
insightId
Die eindeutige Kennung, die für diesen speziellen Insight erstellt wird, wenn eine erfolgreiche POST-Anfrage ausgeführt wird.

Liste mit Standardmetriken für Algorithmen abrufen

Sie können eine Liste mit allen Ihren Algorithmen und Standardmetriken abrufen, indem Sie eine GET-Anfrage an den Metrikendpunkt richten. Zur Abfrage einer bestimmten Metrik stellen Sie eine GET-Anfrage und geben im Anfragepfad einen gültigen {ALGORITHM} an.

API-Format

GET /insights/metrics
GET /insights/metrics?algorithm={ALGORITHM}
Parameter
Beschreibung
{ALGORITHM}
Die Kennung des Algorithmustyps.

Anfrage

Die folgende Anfrage enthält eine Abfrage und ruft mithilfe der Algorithmuskennung {ALGORITHM} eine spezifische Metrik ab.

curl -X GET \
  'https://platform.adobe.io/data/sensei/insights/metrics?algorithm={ALGORITHM}' \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Antwort

Eine erfolgreiche Antwort gibt eine Payload zurück, die die eindeutige Kennung des algorithm und eine Gruppe von Standardmetriken enthält.

{
    "children": [
        {
            "algorithm": "15c53796-bd6b-4e09-b51d-7296aa20af71",
            "defaultMetrics": [
                "f-score",
                "auroc",
                "roc",
                "precision",
                "recall",
                "accuracy",
                "confusion matrix"
            ]
        }
    ]
}
recommendation-more-help
cc79fe26-64da-411e-a6b9-5b650f53e4e9