MLInstances端點
MLInstance是現有引擎與定義任何訓練引數、評分引數或硬體資源組態的適當組態集的配對。
建立MLInstance create-an-mlinstance
您可以執行POST要求,同時提供包含有效引擎識別碼({ENGINE_ID}
)和適當預設組態集的要求裝載,以建立MLInstance。
如果「引擎ID」參照PySpark或Spark引擎,則您可以設定計算資源的數量,例如核心數量或記憶體數量。 如果參考了Python引擎,您可以選擇使用CPU或GPU進行訓練和評分。 如需詳細資訊,請參閱PySpark和Spark資源設定及Python CPU和GPU設定的附錄小節。
API格式
POST /mlInstances
要求
curl -X POST \
https://platform.adobe.io/data/sensei/mlInstances \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json' \
-d '{
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "training parameter",
"value": "parameter value"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "scoring parameter",
"value": "parameter value"
}
]
},
{
"name": "fp",
"parameters": [
{
"key": "feature pipeline parameter",
"value": "parameter value"
}
]
}
],
}'
name
description
engineId
tasks
回應
成功的回應會傳回承載,其中包含新建立的MLInstance的詳細資料,包括其唯一識別碼(id
)。
{
"id": "46986c8f-7739-4376-8509-0178bdf32cda",
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "training parameter",
"value": "parameter value"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "scoring parameter",
"value": "parameter value"
}
]
},
{
"name": "fp",
"parameters": [
{
"key": "feature pipeline parameter",
"value": "parameter value"
}
]
}
]
}
擷取MLInstances清單
您可以透過執行單一GET要求來擷取MLInstances清單。 若要協助篩選結果,您可以在請求路徑中指定查詢引數。 如需可用查詢的清單,請參閱查詢資產擷取引數的附錄區段。
API格式
GET /mlInstances
GET /mlInstances?{QUERY_PARAMETER}={VALUE}
GET /mlInstances?{QUERY_PARAMETER_1}={VALUE_1}&{QUERY_PARAMETER_2}={VALUE_2}
要求
curl -X GET \
https://platform.adobe.io/data/sensei/mlInstances \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
回應
成功的回應會傳回MLInstances清單及其詳細資料。
{
"children": [
{
"id": "46986c8f-7739-4376-8509-0178bdf32cda",
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
},
{
"id": "56986c8f-7739-4376-8509-0178bdf32cda",
"name": "Retail Sales Model",
"description": "A Model created with the Retail Sales Recipe",
"engineId": "32f4166f-85ba-4130-a995-a2b8e1edde32",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
],
"_page": {
"property": "deleted==false",
"totalCount": 2,
"count": 2
}
}
擷取特定MLInstance retrieve-specific
您可以執行GET要求,在要求路徑中包含所需MLInstance的ID,以擷取特定MLInstance的詳細資訊。
API格式
GET /mlInstances/{MLINSTANCE_ID}
{MLINSTANCE_ID}
要求
curl -X GET \
https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
回應
成功的回應會傳回MLInstance的詳細資料。
{
"id": "46986c8f-7739-4376-8509-0178bdf32cda",
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "training parameter",
"value": "parameter value"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "scoring parameter",
"value": "parameter value"
}
]
},
{
"name": "featurePipeline",
"parameters": [
{
"key": "feature pipeline parameter",
"value": "parameter value"
}
]
}
]
}
更新MLInstance
您可以透過PUT要求(要求路徑中包含Target MLInstance的ID)覆寫其屬性,並提供包含已更新屬性的JSON裝載,以更新現有的MLInstance。
下列範例API呼叫最初具有這些屬性時,將會更新MLInstance的訓練和評分引數:
{
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "00000000-0000-0000-0000-000000000000",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "learning_rate",
"value": "0.3"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "output_dataset_id",
"value": "output-dataset-000"
}
]
}
]
}
API格式
PUT /mlInstances/{MLINSTANCE_ID}
{MLINSTANCE_ID}
要求
curl -X PUT \
https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json' \
-d '{
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "00000000-0000-0000-0000-000000000000",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "learning_rate",
"value": "0.5"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "output_dataset_id",
"value": "output-dataset-001"
}
]
}
]
}'
回應
成功的回應會傳回包含MLInstance更新詳細資料的裝載。
{
"id": "46986c8f-7739-4376-8509-0178bdf32cda",
"name": "A name for this MLInstance",
"description": "A description for this MLInstance",
"engineId": "00000000-0000-0000-0000-000000000000",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-02T00:00:00.000Z",
"tasks": [
{
"name": "train",
"parameters": [
{
"key": "learning_rate",
"value": "0.5"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "output_dataset_id",
"value": "output-data-set-001"
}
]
}
]
}
依引擎ID刪除MLInstances
您可以執行包含引擎ID作為查詢引數的DELETE請求,以刪除共用相同引擎的所有MLInstances。
API格式
DELETE /mlInstances?engineId={ENGINE_ID}
{ENGINE_ID}
要求
curl -X DELETE \
https://platform.adobe.io/data/sensei/mlInstances?engineId=22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
回應
{
"title": "Success",
"status": 200,
"detail": "MLInstances successfully deleted"
}
刪除MLInstance
您可以透過執行DELETE要求(要求路徑中包含Target MLInstance的ID)來刪除單一MLInstance。
API格式
DELETE /mlInstances/{MLINSTANCE_ID}
{MLINSTANCE_ID}
要求
curl -X DELETE \
https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
回應
{
"title": "Success",
"status": 200,
"detail": "MLInstance deletion was successful"
}