實驗端點

模型開發和訓練會在實驗層級進行,其中實驗包含MLInstance、訓練回合和評分回合。

建立實驗 create-an-experiment

您可以在要求裝載中提供名稱和有效的MLInstance ID時,透過執行POST要求來建立實驗。

NOTE
不像UI中的模型訓練,透過明確API呼叫建立實驗不會自動建立和執行訓練回合。

API格式

POST /experiments

要求

curl -X POST \
    https://platform.adobe.io/data/sensei/experiments \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: application/vnd.adobe.platform.sensei+json;profile=experiment.v1.json' \
    -d '{
        "name": "a name for this Experiment",
        "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda"
    }'
屬性
說明
name
實驗所需的名稱。 與此實驗對應的訓練回合將繼承此值,以作為訓練回合名稱顯示在UI中。
mlInstanceId
有效的MLInstance ID。

回應

成功的回應會傳回一個承載,其中包含新建立的實驗詳細資料,包括其唯一識別碼(id)。

{
    "id": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
    "name": "A name for this Experiment",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "createdByService": false
}

建立並執行訓練或評分回合 experiment-training-scoring

您可以透過執行POST請求並提供有效的實驗ID和指定執行任務來建立訓練或評分執行。 只有當實驗擁有現有和成功的訓練回合時,才能建立評分回合。 成功建立訓練回合將初始化模型訓練程式,其成功完成將產生經過訓練的模型。 產生經過訓練的模型將取代任何先前存在的模型,因此實驗在任何指定時間都只能使用單一經過訓練的模型。

API格式

POST /experiments/{EXPERIMENT_ID}/runs
參數
說明
{EXPERIMENT_ID}
有效的實驗ID。

要求

curl -X POST \
    https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b/runs \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: application/vnd.adobe.platform.sensei+json;profile=experimentRun.v1.json' \
    -d '{
        "mode": "{TASK}"
    }'
屬性
說明
{TASK}
指定執行的工作。 將此值設定為train (訓練)、score (評分)或featurePipeline (功能管道)。

回應

成功的回應會傳回承載,其中包含新建立之回合的詳細資料,包括繼承的預設訓練或評分引數,以及回合的唯一識別碼({RUN_ID})。

{
    "id": "33408593-2871-4198-a812-6d1b7d939cda",
    "mode": "{TASK}",
    "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "createdBySchedule": false,
    "tasks": [
        {
            "name": "{TASK}",
            "parameters": [
                {
                    "key": "parameter",
                    "value": "parameter value"
                }
            ]
        }
    ]
}

擷取實驗清單

您可以執行單一GET要求並提供有效的MLInstance ID作為查詢引數,以擷取屬於特定MLInstance的「實驗」清單。 如需可用查詢的清單,請參閱查詢資產擷取引數的附錄區段。

API格式

GET /experiments
GET /experiments?property=mlInstanceId=={MLINSTANCE_ID}
參數
說明
{MLINSTANCE_ID}
提供有效的MLInstance ID以擷取屬於該特定MLInstance的實驗清單。

要求

curl -X GET \
    https://platform.adobe.io/data/sensei/experiments?property=mlInstanceId==46986c8f-7739-4376-8509-0178bdf32cda \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

成功的回應會傳回共用相同MLInstance ID ({MLINSTANCE_ID})的實驗清單。

{
    "children": [
        {
            "id": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
            "name": "A name for this Experiment",
            "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
            "created": "2019-01-01T00:00:00.000Z",
            "updated": "2019-01-01T00:00:00.000Z",
            "createdByService": false
        },
        {
            "id": "6cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
            "name": "Training Run 1",
            "mlInstanceId": "46986c8f-7839-4376-8509-0178bdf32cda",
            "created": "2019-01-01T00:00:00.000Z",
            "updated": "2019-01-01T00:00:00.000Z",
            "createdByService": false
        },
        {
            "id": "7cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
            "name": "Training Run 2",
            "mlInstanceId": "46986c8f-7939-4376-8509-0178bdf32cda",
            "created": "2019-01-01T00:00:00.000Z",
            "updated": "2019-01-01T00:00:00.000Z",
            "createdByService": false
        }
    ],
    "_page": {
        "property": "deleted==false",
        "count": 3
    }
}

擷取特定實驗 retrieve-specific

您可以透過執行GET請求(包含請求路徑中的所需實驗ID)來擷取特定實驗的詳細資訊。

API格式

GET /experiments/{EXPERIMENT_ID}
參數
說明
{EXPERIMENT_ID}
有效的實驗ID。

要求

curl -X GET \
    https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

成功的回應會傳回包含所請求實驗詳細資訊的裝載。

{
    "id": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
    "name": "A name for this Experiment",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "createdByService": false
}

擷取實驗執行清單

您可以透過執行單一GET請求並提供有效的實驗ID來擷取屬於特定實驗的訓練或評分回合清單。 若要協助篩選結果,您可以在請求路徑中指定查詢引數。 如需可用查詢引數的完整清單,請參閱用於資產擷取的查詢引數的附錄區段。

NOTE
結合多個查詢引數時,必須以&符號分隔。

API格式

GET /experiments/{EXPERIMENT_ID}/runs
GET /experiments/{EXPERIMENT_ID}/runs?{QUERY_PARAMETER}={VALUE}
GET /experiments/{EXPERIMENT_ID}/runs?{QUERY_PARAMETER_1}={VALUE_1}&{QUERY_PARAMETER_2}={VALUE_2}
參數
說明
{EXPERIMENT_ID}
有效的實驗ID。
{QUERY_PARAMETER}
用來篩選結果的可用查詢引數之一。
{VALUE}
上一個查詢引數的值。

要求

以下請求包含一個查詢,並擷取屬於某些實驗的訓練回合清單。

curl -X GET \
    https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b/runs?property=mode==train \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

成功的回應會傳回一個裝載,其中包含執行清單及其每個詳細資料,包括其實驗執行ID ({RUN_ID})。

{
    "children": [
        {
            "id": "33408593-2871-4198-a812-6d1b7d939cda",
            "mode": "train",
            "experimentId": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
            "created": "2019-01-01T00:00:00.000Z",
            "createdBy": {
                "userId": "Jane_Doe@AdobeID"
            },
            "createdBySchedule": false
        }
    ],
    "_page": {
        "property": "mode==train,experimentId==5cb25a2d-2cbd-4c99-a619-8ddae5250a7b,deleted==false",
        "totalCount": 1,
        "count": 1
    }
}

更新實驗

您可以透過PUT請求(請求路徑中包含目標實驗的ID)覆寫其屬性,並提供包含已更新屬性的JSON裝載,以更新現有的實驗。

TIP
為確保此PUT要求成功,建議您先執行GET要求,以依ID擷取實驗。 然後,修改和更新傳回的JSON物件,並套用整個修改的JSON物件作為PUT請求的裝載。

以下範例API呼叫最初具有這些屬性時會更新實驗的名稱:

{
    "name": "A name for this Experiment",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "createdByService": false
}

API格式

PUT /experiments/{EXPERIMENT_ID}
參數
說明
{EXPERIMENT_ID}
有效的實驗ID。

要求

curl -X PUT \
    https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: application/vnd.adobe.platform.sensei+json;profile=experiments.v1.json' \
    -d '{
        "name": "An upated name",
        "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
        "created": "2019-01-01T00:00:00.000Z",
        "createdBy": {
            "userId": "Jane_Doe@AdobeID"
        },
        "createdByService": false
    }'

回應

成功的回應會傳回包含實驗更新詳細資料的裝載。

{
    "id": "5cb25a2d-2cbd-4c99-a619-8ddae5250a7b",
    "name": "An updated name",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-02T00:00:00.000Z",
    "createdByService": false
}

刪除實驗

您可以透過執行DELETE請求來刪除單一實驗,該請求路徑中包含目標實驗的ID。

API格式

DELETE /experiments/{EXPERIMENT_ID}
參數
說明
{EXPERIMENT_ID}
有效的實驗ID。

要求

curl -X DELETE \
    https://platform.adobe.io/data/sensei/experiments/5cb25a2d-2cbd-4c99-a619-8ddae5250a7b \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

{
    "title": "Success",
    "status": 200,
    "detail": "Experiment successfully deleted"
}

依MLInstance ID刪除實驗

您可以執行包含MLInstance ID作為查詢引數的DELETE要求,以刪除屬於特定MLInstance的所有實驗。

API格式

DELETE /experiments?mlInstanceId={MLINSTANCE_ID}
參數
說明
{MLINSTANCE_ID}
有效的MLInstance ID。

要求

curl -X DELETE \
    https://platform.adobe.io/data/sensei/experiments?mlInstanceId=46986c8f-7739-4376-8509-0178bdf32cda \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

{
    "title": "Success",
    "status": 200,
    "detail": "Experiments successfully deleted"
}
recommendation-more-help
cc79fe26-64da-411e-a6b9-5b650f53e4e9