MLServices-slutpunkt
En MLService är en publicerad tränad modell som ger din organisation möjlighet att komma åt och återanvända tidigare utvecklade modeller. En viktig egenskap hos MLServices är möjligheten att automatisera kurser och poängsättning på schemalagd basis. Schemalagda kurser kan bidra till att bibehålla en modells effektivitet och exakthet, medan schemalagda kurser kan säkerställa att nya insikter genereras på ett konsekvent sätt.
Automatiska utbildnings- och poängsättningsscheman definieras med en starttidsstämpel, sluttidsstämpel och en frekvens som representeras som ett cron-uttryck. Scheman kan definieras när en MLService skapas eller används av en befintlig MLService uppdateras.
Skapa en MLService create-an-mlservice
Du kan skapa en MLService genom att utföra en begäran om POST och en nyttolast som anger ett namn för tjänsten och ett giltigt MLInstance-ID. Den MLInstance som används för att skapa en MLService behövs inte för att ha befintliga utbildningsexperter, men du kan välja att skapa MLService med en befintlig utbildad modell genom att ange motsvarande Experiment ID och ID för utbildningskörning.
API-format
POST /mlServices
Begäran
curl -X POST \
https://platform.adobe.io/data/sensei/mlServices \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json; profile=mlService.v1.json' \
-d '{
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingExperimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
"trainingSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"scoringSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
}
}'
name
description
mlInstanceId
trainingDataSetId
trainingExperimentId
trainingExperimentRunId
trainingSchedule
trainingSchedule.startTime
trainingSchedule.endTime
trainingSchedule.cron
scoringSchedule
scoringSchedule.startTime
scoringSchedule.endTime
scoringSchedule.cron
Svar
Ett lyckat svar returnerar en nyttolast som innehåller information om den nyligen skapade MLService, inklusive dess unika identifierare (id
), test-ID för utbildning (trainingExperimentId
), test-ID för poängsättning (scoringExperimentId
) och datauppsättnings-ID för inmatningsutbildning (trainingDataSetId
).
{
"id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"trainingSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"scoringSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"updated": "2019-01-01T00:00:00.000Z"
}
Hämta en lista med MLServices retrieve-a-list-of-mlservices
Du kan hämta en lista över MLServices genom att utföra en enda begäran om GET. Du kan filtrera resultaten genom att ange frågeparametrar i sökvägen för begäran. En lista med tillgängliga frågor finns i avsnittet om tillägg för frågeparametrar för hämtning av resurser.
API-format
GET /mlServices
GET /mlServices?{QUERY_PARAMETER}={VALUE}
GET /mlServices?{QUERY_PARAMETER_1}={VALUE_1}&{QUERY_PARAMETER_2}={VALUE_2}
{QUERY_PARAMETER}
{VALUE}
Begäran
Följande begäran innehåller en fråga och hämtar en lista över MLServices som delar samma MLInstance-ID ({MLINSTANCE_ID}
).
curl -X GET \
'https://platform.adobe.io/data/sensei/mlServices?property=mlInstanceId==46986c8f-7739-4376-8509-0178bdf32cda' \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Svar
Ett lyckat svar returnerar en lista över MLServices och deras information, inklusive deras MLService-ID ({MLSERVICE_ID}
), test-ID för utbildning ({TRAINING_ID}
), test-ID för poängsättning ({SCORING_ID}
) och indatauppsättnings-ID för utbildning ({DATASET_ID}
).
{
"children": [
{
"id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
"name": "A service created in UI",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
],
"_page": {
"property": "mlInstanceId==46986c8f-7739-4376-8509-0178bdf32cda,deleted==false",
"count": 1
}
}
Hämta en specifik MLService retrieve-a-specific-mlservice
Du kan hämta information om en specifik Experiment genom att utföra en GET-begäran som innehåller det önskade MLService-ID:t i sökvägen för begäran.
API-format
GET /mlServices/{MLSERVICE_ID}
{MLSERVICE_ID}
: Ett giltigt MLService-ID.
Begäran
curl -X GET \
https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Svar
Ett godkänt svar returnerar en nyttolast som innehåller information om den begärda MLService.
{
"id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
Uppdatera en MLService update-an-mlservice
Du kan uppdatera en befintlig MLService genom att skriva över dess egenskaper via en PUT-begäran som innehåller mål-MLService-ID:t i sökvägen för begäran och som tillhandahåller en JSON-nyttolast som innehåller uppdaterade egenskaper.
API-format
PUT /mlServices/{MLSERVICE_ID}
{MLSERVICE_ID}
: Ett giltigt MLService-ID.
Begäran
curl -X PUT \
https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json; profile=mlService.v1.json' \
-d '{
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"trainingSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"scoringSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
}
}'
Svar
Ett godkänt svar returnerar en nyttolast som innehåller den uppdaterade informationen för MLService.
{
"id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
"name": "A name for this MLService",
"description": "A description for this MLService",
"mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
"trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
"trainingDataSetId": "5ee3cd7f2d34011913c56941",
"scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"trainingSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"scoringSchedule": {
"startTime": "2019-01-01T00:00",
"endTime": "2019-12-31T00:00",
"cron": "20 * * * *"
},
"updated": "2019-01-02T00:00:00.000Z"
}
Ta bort en MLService
Du kan ta bort en enskild MLService genom att utföra en DELETE-begäran som innehåller mål-MLService-ID:t i sökvägen för begäran.
API-format
DELETE /mlServices/{MLSERVICE_ID}
{MLSERVICE_ID}
Begäran
curl -X DELETE \
https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Svar
{
"title": "Success",
"status": 200,
"detail": "MLService deletion was successful"
}
Ta bort MLServices av MLInstance ID
Du kan ta bort alla MLServices som hör till en viss MLInstance genom att utföra en DELETE-begäran som anger ett MLInstance-ID som en frågeparameter.
API-format
DELETE /mlServices?mlInstanceId={MLINSTANCE_ID}
{MLINSTANCE_ID}
Begäran
curl -X DELETE \
https://platform.adobe.io/data/sensei/mlServices?mlInstanceId=46986c8f-7739-4376-8509-0178bdf32cda \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Svar
{
"title": "Success",
"status": 200,
"detail": "MLServices deletion was successful"
}