데이터 과학자를 위한 Data Science Workspace 시작하기
Adobe Experience Platform의 데이터 과학 Workspace에 대해 알아봅니다. 이 재생 목록은 JupyterLab Notebooks를 사용하여 통찰력을 얻고 데이터를 쿼리하는 방법, 프로필이 활성화된 데이터 세트를 만드는 방법, 자동화된 머신 러닝 모델을 게시하는 방법 및 Adobe과 Adobe 이외의 애플리케이션에 머신 러닝을 통한 통찰력을 활성화하는 방법에 대해 알아보고자 하는 데이터 과학자를 위해 설계되었습니다.
데이터 과학 작업 영역 개요
Adobe Experience Platform에서 머신 러닝의 비전은 Adobe 제품, 고객 및 파트너의 도메인 전문 지식을 사용하여 데이터 과학을 대중화하고 차세대 고객 경험을 강화할 수 있는 지능형 서비스 생태계를 만드는 것입니다. Data Science Workspace을 사용하면 옴니채널 데이터에 쉽게 액세스하고 모델을 구축하며 원클릭 배포로 모델을 운영하고 실시간 고객 프로필을 통해 공유하여 모델 통찰력을 사용할 수 있습니다. 이 비디오에서는 데이터 과학 Workspace이 무엇이며 비즈니스에 제공하는 가치에 대한 개요를 제공합니다.
372
{ "description": "Adobe Experience Platform에서 머신 러닝의 비전은 Adobe 제품, 고객 및 파트너의 도메인 전문 지식을 사용하여 데이터 과학을 대중화하고 차세대 고객 경험을 강화할 수 있는 지능형 서비스 생태계를 만드는 것입니다. Data Science Workspace을 사용하면 옴니채널 데이터에 쉽게 액세스하고 모델을 구축하며 원클릭 배포로 모델을 운영하고 실시간 고객 프로필을 통해 공유하여 모델 통찰력을 사용할 수 있습니다. 이 비디오에서는 데이터 과학 Workspace이 무엇이며 비즈니스에 제공하는 가치에 대한 개요를 제공합니다.", "duration": "PT0H6M12S", "embedUrl": "https://video.tv.adobe.com/v/3412914/", "name": "데이터 과학 작업 영역 개요", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926388-100x56.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926388-150x85.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926388-200x113.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926388-220x124.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926388-236x133.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926388-290x163.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926388-420x236.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926389-640x360.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926389-666x375.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926389-720x405.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926389-960x540.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/f84a09ca-a6a8-4480-93b5-df050151f36f/9dfcbb143af84563bc89ed2a0401a373_1672926390-1920x1080.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2023-01-05T13:40:59Z", "hasPart": [], "educationLevel": [ "Beginner" ], "learningResourceType": "데이터 과학 작업 영역 개요" }
데이터 과학 Workspace 아키텍처 개요
이 비디오에서는 주요 아키텍처에 대해 설명하고 Adobe Experience Platform에서 데이터 과학 Workspace의 기본 구성 요소를 보여 줍니다.
281
{ "description": "이 비디오에서는 주요 아키텍처에 대해 설명하고 Adobe Experience Platform에서 데이터 과학 Workspace의 기본 구성 요소를 보여 줍니다.", "duration": "PT0H4M41S", "embedUrl": "https://video.tv.adobe.com/v/332368/", "name": "데이터 과학 Workspace 아키텍처 개요", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624068-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624068-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624068-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624068-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624069-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624069-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624069-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-03-24T21:18:03Z", "hasPart": [ { "@type": "Clip", "name": "Data Collection", "startOffset": 14, "endOffset": 47, "url": "https://video.tv.adobe.com/v/332368/?t=14" }, { "@type": "Clip", "name": "Streaming data path", "startOffset": 48, "endOffset": 60, "url": "https://video.tv.adobe.com/v/332368/?t=48" }, { "@type": "Clip", "name": "Batch data collection", "startOffset": 61, "endOffset": 92, "url": "https://video.tv.adobe.com/v/332368/?t=61" }, { "@type": "Clip", "name": "Data Science Workspace", "startOffset": 93, "endOffset": 167, "url": "https://video.tv.adobe.com/v/332368/?t=93" }, { "@type": "Clip", "name": "Model operationalization ", "startOffset": 168, "endOffset": 222, "url": "https://video.tv.adobe.com/v/332368/?t=168" }, { "@type": "Clip", "name": "Model insight outputs", "startOffset": 223, "endOffset": 281, "url": "https://video.tv.adobe.com/v/332368/?t=223" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "데이터 과학 Workspace 아키텍처 개요" }
강의 스키마 및 데이터 세트 만들기
나머지 과정에서 사용되는 Data Science Workspace 과정 데이터 세트 및 스키마를 만드는 방법을 알아봅니다.
246
{ "description": "나머지 과정에서 사용되는 Data Science Workspace 과정 데이터 세트 및 스키마를 만드는 방법을 알아봅니다.", "duration": "PT0H4M6S", "embedUrl": "https://video.tv.adobe.com/v/333312/", "name": "강의 스키마 및 데이터 세트 만들기", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666631-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666631-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666631-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666631-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666633-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666633-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666633-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-15T22:13:10Z", "hasPart": [ { "@type": "Clip", "name": "Begin demo", "startOffset": 17, "endOffset": 35, "url": "https://video.tv.adobe.com/v/333312/?t=17" }, { "@type": "Clip", "name": "Create the dataset schema", "startOffset": 36, "endOffset": 59, "url": "https://video.tv.adobe.com/v/333312/?t=36" }, { "@type": "Clip", "name": "Add schema field groups", "startOffset": 60, "endOffset": 97, "url": "https://video.tv.adobe.com/v/333312/?t=60" }, { "@type": "Clip", "name": "Set Primary ID", "startOffset": 98, "endOffset": 136, "url": "https://video.tv.adobe.com/v/333312/?t=98" }, { "@type": "Clip", "name": "Create a new dataset", "startOffset": 137, "endOffset": 185, "url": "https://video.tv.adobe.com/v/333312/?t=137" }, { "@type": "Clip", "name": "Ingest data using batch mode", "startOffset": 186, "endOffset": 222, "url": "https://video.tv.adobe.com/v/333312/?t=186" }, { "@type": "Clip", "name": "Preview the data", "startOffset": 223, "endOffset": 246, "url": "https://video.tv.adobe.com/v/333312/?t=223" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "강의 스키마 및 데이터 세트 만들기" }
JupyterLab 노트북에 데이터 로드
이 비디오는 JupyterLab 노트북을 만들고 Adobe Experience Platform에서 데이터를 로드하는 방법을 보여 줍니다. 또한 많은 양의 데이터를 사용하여 작업할 때 노트북의 성능을 향상시키는 방법도 보여줍니다.
224
{ "description": "이 비디오는 JupyterLab 노트북을 만들고 Adobe Experience Platform에서 데이터를 로드하는 방법을 보여 줍니다. 또한 많은 양의 데이터를 사용하여 작업할 때 노트북의 성능을 향상시키는 방법도 보여줍니다.", "duration": "PT0H3M44S", "embedUrl": "https://video.tv.adobe.com/v/345260/", "name": "JupyterLab 노트북에 데이터 로드", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393341-100x56.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393342-150x84.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393342-200x113.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393342-220x124.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393343-236x133.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393343-290x186.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393343-420x236.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393343-640x360.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393343-666x374.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393344-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393344-720x405.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/bc87bb86-02c2-4d93-9850-0bf41705465b/394f3387fa214914bc9c3fc4af82d132_1658393344-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2022-07-21T08:44:55Z", "hasPart": [], "educationLevel": [ "Beginner" ], "learningResourceType": "JupyterLab 노트북에 데이터 로드" }
데이터 과학 Workspace에서 데이터 쿼리 및 검색
Adobe Experience Platform에서는 쿼리 서비스를 JupyterLab에 표준 기능으로 통합하여 데이터 과학 Workspace에서 SQL(Structured Query Language)을 사용할 수 있습니다.
555
{ "description": "Adobe Experience Platform에서는 쿼리 서비스를 JupyterLab에 표준 기능으로 통합하여 데이터 과학 Workspace에서 SQL(Structured Query Language)을 사용할 수 있습니다.", "duration": "PT0H9M15S", "embedUrl": "https://video.tv.adobe.com/v/333311/", "name": "데이터 과학 Workspace에서 데이터 쿼리 및 검색", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908158-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908160-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908160-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908160-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908160-960x540.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908161-1920x1080.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-15T22:11:33Z", "hasPart": [ { "@type": "Clip", "name": "Why Query Service?", "startOffset": 25, "endOffset": 113, "url": "https://video.tv.adobe.com/v/333311/?t=25" }, { "@type": "Clip", "name": "Using Query Service", "startOffset": 114, "endOffset": 180, "url": "https://video.tv.adobe.com/v/333311/?t=114" }, { "@type": "Clip", "name": "Components of Query Service", "startOffset": 181, "endOffset": 196, "url": "https://video.tv.adobe.com/v/333311/?t=181" }, { "@type": "Clip", "name": "Start Demo", "startOffset": 197, "endOffset": 234, "url": "https://video.tv.adobe.com/v/333311/?t=197" }, { "@type": "Clip", "name": "Import libraries", "startOffset": 235, "endOffset": 273, "url": "https://video.tv.adobe.com/v/333311/?t=235" }, { "@type": "Clip", "name": "Configure Query Service in Notebooks", "startOffset": 274, "endOffset": 296, "url": "https://video.tv.adobe.com/v/333311/?t=274" }, { "@type": "Clip", "name": "Find your dataset", "startOffset": 297, "endOffset": 392, "url": "https://video.tv.adobe.com/v/333311/?t=297" }, { "@type": "Clip", "name": "Data discovery", "startOffset": 393, "endOffset": 420, "url": "https://video.tv.adobe.com/v/333311/?t=393" }, { "@type": "Clip", "name": "Query: hourly activity", "startOffset": 421, "endOffset": 475, "url": "https://video.tv.adobe.com/v/333311/?t=421" }, { "@type": "Clip", "name": "Query: Top 10 pages", "startOffset": 476, "endOffset": 512, "url": "https://video.tv.adobe.com/v/333311/?t=476" }, { "@type": "Clip", "name": "Conclusion", "startOffset": 513, "endOffset": 555, "url": "https://video.tv.adobe.com/v/333311/?t=513" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "데이터 과학 Workspace에서 데이터 쿼리 및 검색" }
데이터 과학 Workspace의 탐색적 데이터 분석
EDA(Exploratory Data Analysis) 튜토리얼은 데이터에서 패턴을 찾고, 데이터 온전성을 확인하고, 예측 모델에 대한 관련 데이터를 요약하는 데 도움이 되도록 설계되었습니다.
654
{ "description": "EDA(Exploratory Data Analysis) 튜토리얼은 데이터에서 패턴을 찾고, 데이터 온전성을 확인하고, 예측 모델에 대한 관련 데이터를 요약하는 데 도움이 되도록 설계되었습니다.", "duration": "PT0H10M54S", "embedUrl": "https://video.tv.adobe.com/v/333310/", "name": "데이터 과학 Workspace의 탐색적 데이터 분석", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665337-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-15T22:05:37Z", "hasPart": [ { "@type": "Clip", "name": "What is EDA?", "startOffset": 34, "endOffset": 140, "url": "https://video.tv.adobe.com/v/333310/?t=34" }, { "@type": "Clip", "name": "Start demo", "startOffset": 141, "endOffset": 206, "url": "https://video.tv.adobe.com/v/333310/?t=141" }, { "@type": "Clip", "name": "Set prediction variable", "startOffset": 207, "endOffset": 234, "url": "https://video.tv.adobe.com/v/333310/?t=207" }, { "@type": "Clip", "name": "Data aggregation and goal creation", "startOffset": 235, "endOffset": 272, "url": "https://video.tv.adobe.com/v/333310/?t=235" }, { "@type": "Clip", "name": "Merge features with a goal", "startOffset": 273, "endOffset": 315, "url": "https://video.tv.adobe.com/v/333310/?t=273" }, { "@type": "Clip", "name": "Missing values and outliers", "startOffset": 316, "endOffset": 423, "url": "https://video.tv.adobe.com/v/333310/?t=316" }, { "@type": "Clip", "name": "Univariate analysis", "startOffset": 424, "endOffset": 560, "url": "https://video.tv.adobe.com/v/333310/?t=424" }, { "@type": "Clip", "name": "Bivariate analysis", "startOffset": 561, "endOffset": 623, "url": "https://video.tv.adobe.com/v/333310/?t=561" }, { "@type": "Clip", "name": "Important numerical features", "startOffset": 624, "endOffset": 654, "url": "https://video.tv.adobe.com/v/333310/?t=624" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "데이터 과학 Workspace의 탐색적 데이터 분석" }
레서피, 모델 및 서비스 개요
Adobe Experience Platform Data Science Workspace의 레시피, 모델 및 서비스에 대해 알아봅니다.
528
{ "description": "Adobe Experience Platform Data Science Workspace의 레시피, 모델 및 서비스에 대해 알아봅니다.", "duration": "PT0H8M48S", "embedUrl": "https://video.tv.adobe.com/v/333380/", "name": "레서피, 모델 및 서비스 개요", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666009-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666009-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666009-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666009-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666011-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666011-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-19T00:46:45Z", "hasPart": [ { "@type": "Clip", "name": "Components recap", "startOffset": 37, "endOffset": 60, "url": "https://video.tv.adobe.com/v/333380/?t=37" }, { "@type": "Clip", "name": "Machine learning process", "startOffset": 61, "endOffset": 75, "url": "https://video.tv.adobe.com/v/333380/?t=61" }, { "@type": "Clip", "name": "Modeling", "startOffset": 76, "endOffset": 103, "url": "https://video.tv.adobe.com/v/333380/?t=76" }, { "@type": "Clip", "name": "Recipes", "startOffset": 104, "endOffset": 128, "url": "https://video.tv.adobe.com/v/333380/?t=104" }, { "@type": "Clip", "name": "Experimentation", "startOffset": 129, "endOffset": 156, "url": "https://video.tv.adobe.com/v/333380/?t=129" }, { "@type": "Clip", "name": "Publish a service", "startOffset": 157, "endOffset": 177, "url": "https://video.tv.adobe.com/v/333380/?t=157" }, { "@type": "Clip", "name": "Consume insights", "startOffset": 178, "endOffset": 198, "url": "https://video.tv.adobe.com/v/333380/?t=178" }, { "@type": "Clip", "name": "Machine learning algorithms", "startOffset": 199, "endOffset": 205, "url": "https://video.tv.adobe.com/v/333380/?t=199" }, { "@type": "Clip", "name": "Supervised learning", "startOffset": 206, "endOffset": 280, "url": "https://video.tv.adobe.com/v/333380/?t=206" }, { "@type": "Clip", "name": "Unsupervised learning", "startOffset": 281, "endOffset": 316, "url": "https://video.tv.adobe.com/v/333380/?t=281" }, { "@type": "Clip", "name": "Reinforcement learning", "startOffset": 317, "endOffset": 356, "url": "https://video.tv.adobe.com/v/333380/?t=317" }, { "@type": "Clip", "name": "Accuracy", "startOffset": 357, "endOffset": 374, "url": "https://video.tv.adobe.com/v/333380/?t=357" }, { "@type": "Clip", "name": "Precision", "startOffset": 375, "endOffset": 404, "url": "https://video.tv.adobe.com/v/333380/?t=375" }, { "@type": "Clip", "name": "Model tuning", "startOffset": 405, "endOffset": 436, "url": "https://video.tv.adobe.com/v/333380/?t=405" }, { "@type": "Clip", "name": "Hyperparameters", "startOffset": 437, "endOffset": 528, "url": "https://video.tv.adobe.com/v/333380/?t=437" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "레서피, 모델 및 서비스 개요" }
모델 성능 분석
혼동 행렬, 정확도, 리콜 및 정밀도와 같이 모델의 성능을 분석하는 데 사용되는 다양한 방법에 대해 알아봅니다.
254
{ "description": "혼동 행렬, 정확도, 리콜 및 정밀도와 같이 모델의 성능을 분석하는 데 사용되는 다양한 방법에 대해 알아봅니다.", "duration": "PT0H4M14S", "embedUrl": "https://video.tv.adobe.com/v/333427/", "name": "모델 성능 분석", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-960x540.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663569-1920x1080.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-21T22:48:02Z", "hasPart": [ { "@type": "Clip", "name": "Selecting metrics", "startOffset": 35, "endOffset": 120, "url": "https://video.tv.adobe.com/v/333427/?t=35" }, { "@type": "Clip", "name": "Model evaluation demo", "startOffset": 121, "endOffset": 254, "url": "https://video.tv.adobe.com/v/333427/?t=121" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "모델 성능 분석" }
레시피 빌더 템플릿을 사용하여 모델 구축
이 비디오는 JupyterLab 런처의 레시피 빌더 템플릿을 사용하여 성향 모델을 교육하고 점수화하고 레시피를 만드는 방법을 보여 줍니다.
501
{ "description": "이 비디오는 JupyterLab 런처의 레시피 빌더 템플릿을 사용하여 성향 모델을 교육하고 점수화하고 레시피를 만드는 방법을 보여 줍니다.", "duration": "PT0H8M21S", "embedUrl": "https://video.tv.adobe.com/v/333570/", "name": "레시피 빌더 템플릿을 사용하여 모델 구축", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665502-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665502-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665502-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665504-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665504-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-27T19:52:55Z", "hasPart": [ { "@type": "Clip", "name": "Configure datasets", "startOffset": 38, "endOffset": 104, "url": "https://video.tv.adobe.com/v/333570/?t=38" }, { "@type": "Clip", "name": "Training data loader", "startOffset": 105, "endOffset": 241, "url": "https://video.tv.adobe.com/v/333570/?t=105" }, { "@type": "Clip", "name": "Scoring data loader", "startOffset": 242, "endOffset": 260, "url": "https://video.tv.adobe.com/v/333570/?t=242" }, { "@type": "Clip", "name": "Pipeline file", "startOffset": 261, "endOffset": 294, "url": "https://video.tv.adobe.com/v/333570/?t=261" }, { "@type": "Clip", "name": "Evaluator file", "startOffset": 295, "endOffset": 360, "url": "https://video.tv.adobe.com/v/333570/?t=295" }, { "@type": "Clip", "name": "Data saver file", "startOffset": 361, "endOffset": 397, "url": "https://video.tv.adobe.com/v/333570/?t=361" }, { "@type": "Clip", "name": "Create a recipe", "startOffset": 398, "endOffset": 501, "url": "https://video.tv.adobe.com/v/333570/?t=398" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "레시피 빌더 템플릿을 사용하여 모델 구축" }
교육된 모델 만들기 및 게시
JupyterLab 레시피 빌더 전자 필기장으로 만든 레시피를 사용하여 모델을 만들고, 교육하고, 평가하고, 게시하는 방법에 대해 알아봅니다.
184
{ "description": "JupyterLab 레시피 빌더 전자 필기장으로 만든 레시피를 사용하여 모델을 만들고, 교육하고, 평가하고, 게시하는 방법에 대해 알아봅니다.", "duration": "PT0H3M4S", "embedUrl": "https://video.tv.adobe.com/v/333595/", "name": "교육된 모델 만들기 및 게시", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-960x540.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664596-1920x1080.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-28T02:34:38Z", "hasPart": [ { "@type": "Clip", "name": "Find your recipe", "startOffset": 9, "endOffset": 45, "url": "https://video.tv.adobe.com/v/333595/?t=9" }, { "@type": "Clip", "name": "Create a model from a recipe", "startOffset": 46, "endOffset": 94, "url": "https://video.tv.adobe.com/v/333595/?t=46" }, { "@type": "Clip", "name": "Start a scoring run", "startOffset": 95, "endOffset": 128, "url": "https://video.tv.adobe.com/v/333595/?t=95" }, { "@type": "Clip", "name": "Publish a model as a Service", "startOffset": 129, "endOffset": 184, "url": "https://video.tv.adobe.com/v/333595/?t=129" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "교육된 모델 만들기 및 게시" }
서비스에 대한 자동화된 교육 및 채점 예약
Data Science Workspace에서 서비스에 대한 자동화된 교육 및 점수를 설정하는 방법에 대해 알아봅니다.
172
{ "description": "Data Science Workspace에서 서비스에 대한 자동화된 교육 및 점수를 설정하는 방법에 대해 알아봅니다.", "duration": "PT0H2M52S", "embedUrl": "https://video.tv.adobe.com/v/333596/", "name": "서비스에 대한 자동화된 교육 및 채점 예약", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-28T03:47:01Z", "hasPart": [ { "@type": "Clip", "name": "Service UI", "startOffset": 8, "endOffset": 25, "url": "https://video.tv.adobe.com/v/333596/?t=8" }, { "@type": "Clip", "name": "Create a training schedule", "startOffset": 26, "endOffset": 93, "url": "https://video.tv.adobe.com/v/333596/?t=26" }, { "@type": "Clip", "name": "Create a scoring schedule", "startOffset": 94, "endOffset": 150, "url": "https://video.tv.adobe.com/v/333596/?t=94" }, { "@type": "Clip", "name": "Update or remove a schedule", "startOffset": 151, "endOffset": 172, "url": "https://video.tv.adobe.com/v/333596/?t=151" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "서비스에 대한 자동화된 교육 및 채점 예약" }
세분화에서 머신 러닝 출력 사용
Data Science Workspace 모델 출력을 실시간 고객 프로필 및 세분화에서 사용하는 방법에 대해 알아봅니다.
387
{ "description": "Data Science Workspace 모델 출력을 실시간 고객 프로필 및 세분화에서 사용하는 방법에 대해 알아봅니다.", "duration": "PT0H6M27S", "embedUrl": "https://video.tv.adobe.com/v/333711/", "name": "세분화에서 머신 러닝 출력 사용", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664768-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664768-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664768-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664770-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664770-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664770-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-06-01T01:49:19Z", "hasPart": [ { "@type": "Clip", "name": "Understanding Real-time Customer Profile", "startOffset": 12, "endOffset": 90, "url": "https://video.tv.adobe.com/v/333711/?t=12" }, { "@type": "Clip", "name": "Profile lookup", "startOffset": 91, "endOffset": 195, "url": "https://video.tv.adobe.com/v/333711/?t=91" }, { "@type": "Clip", "name": "Modify the Profile dashboard", "startOffset": 196, "endOffset": 239, "url": "https://video.tv.adobe.com/v/333711/?t=196" }, { "@type": "Clip", "name": "Create a segment", "startOffset": 240, "endOffset": 311, "url": "https://video.tv.adobe.com/v/333711/?t=240" }, { "@type": "Clip", "name": "Activate a segment", "startOffset": 312, "endOffset": 387, "url": "https://video.tv.adobe.com/v/333711/?t=312" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "세분화에서 머신 러닝 출력 사용" }