권장 사항 키를 기반으로 권장 사항 만들기
알고리즘 기반의 Recommendations은 방문자 행동 컨텍스트를 사용하여 Adobe Target Recommendations 활동에서 관련 결과를 표시합니다.
각 알고리즘 유형은 다음 표와 같이 해당 유형에 적합한 다양한 알고리즘을 제공합니다.
- 이 항목을 보고 다른 항목도 본 사람
- 이 항목을 보고 다른 항목을 구입한 사람
- 이 항목을 구입하고 다른 항목도 구입한 사람
- 사이트에서 가장 많이 본 항목
- 범주별 최고 조회수
- 항목별 가장 많이 본 항목 속성
- 사이트 전체 최상위 판매자
- 범주별 최상위 판매자
- 항목 속성별 최상위 판매자
- Analytics 지표 상위
- 이 항목을 보고 다른 항목도 본 사람
- 이 항목을 보고 다른 항목을 구입한 사람
- 이 항목을 구입하고 다른 항목도 구입한 사람
- 속성이 비슷한 항목
- 최근에 본 항목
- 추천 항목
- 사용자 지정 알고리즘
각 기준은 자체 탭에 정의됩니다. 트래픽은 여러 기준 테스트에 고르게 분할됩니다. 즉, 두 개의 기준이 있으면 트래픽이 이러한 두 기준 간에 동일하게 분할됩니다. 두 개의 기준과 두 개의 디자인이 있는 경우 트래픽이 네 개의 조합 간에 균일하게 분할됩니다. 또한 비교를 위해 기본 콘텐츠를 보는 사이트 방문자의 비율도 지정할 수 있습니다. 이 경우 지정된 비율의 방문자는 기본 콘텐츠를 보고 나머지 방문자는 기준과 디자인 조합 간에 분할됩니다.
기준을 만들고 해당 알고리즘 유형 및 알고리즘을 정의하는 방법에 대한 자세한 내용은 기준 만들기를 참조하십시오.
다른 권장 사항 알고리즘은 서로 다른 유형의 페이지에 배치될 수 있도록 해줍니다. 각 알고리즘 유형 및 사용 가능한 알고리즘에 대한 자세한 내용은 다음 섹션을 참조하십시오.
장바구니 기반 cart-based
Cart-Based 알고리즘 유형을 사용하면 방문자의 현재 장바구니의 내용에 따라 항목을 추천할 수 있습니다. 권장 사항 키는 쉼표로 구분된 값으로 mbox 매개 변수 cartIds
을(를) 통해 제공됩니다. 처음 10개의 값만 고려됩니다.
장바구니 기반 권장 사항 논리는 "Recommended For You" 사용자 기반 알고리즘 및 "People Who Viewed These, Bought Those" 및 "People Who Bought These, Bought Those" 항목 기반 알고리즘과 유사합니다.
Target은(는) 공동 작업 필터링 기법을 사용하여 방문자 장바구니에 있는 각 항목의 유사성을 확인한 다음 각 항목 간에 이러한 비헤이비어 유사성을 결합하여 병합 목록을 가져옵니다.
또한 Target을(를) 통해 마케터는 단일 세션 내에서 또는 여러 세션에서 방문자 행동을 볼 수 있습니다.
-
Single Session: 다른 방문자가 단일 세션 내에서 수행한 작업을 기반으로 합니다.
사용, 상황 또는 이벤트에 따라 제품이 서로 강력하게 "함께" 이동한다는 느낌이 있을 때 단일 세션 내에서 동작을 살펴보는 것이 적절할 수 있습니다. 예를 들어 방문자가 프린터를 구입하고 있으며 잉크와 용지도 필요할 수 있습니다. 또는 방문자가 땅콩 버터를 구매하고 빵과 젤리도 필요할 수 있습니다.
-
Across Sessions: 다른 방문자가 여러 세션에서 수행한 작업을 기반으로 합니다.
방문자의 선호도나 취향에 따라 제품이 서로 강하게 "함께" 이동한다는 느낌이 있을 때 여러 세션에서 동작을 살펴보는 것이 적절할 수 있습니다. 예를 들어 방문자는 스타워즈를 좋아하고 인디애나 존스를 좋아하지만, 같은 자리에서 두 영화를 모두 보고 싶지 않은 경우에도 마찬가지입니다. 또는 방문자가 보드 게임 "Codenames"를 좋아하고 보드 게임 "Avalon"을 좋아할 수도 있습니다. 방문자가 두 게임을 동시에 플레이할 수 없는 경우에도 마찬가지입니다.
Target은(는) 단일 세션 내에서 방문자 행동을 보는지 아니면 여러 세션에서 방문자 행동을 보는지 여부에 관계없이 현재 장바구니에 있는 항목을 기준으로 각 방문자에 대해 권장 사항을 제공합니다.
Cart-Based 알고리즘 유형에서 다음 알고리즘을 사용할 수 있습니다.
People Who Viewed This, Viewed Those
지정한 항목을 본 것과 동일한 세션에서 가장 자주 본 항목을 추천합니다.
이 논리는 이 항목을 본 후에 본 다른 제품을 반환합니다. 지정된 제품은 결과 세트에 포함되지 않습니다.
이 논리를 사용하면 항목을 본 다른 방문자도 본 항목을 추천하여 추가 전환 기회를 만들 수 있습니다. 예를 들어 사이트에서 도로 자전거를 보는 방문자는 자전거 헬멧, 자전거 키트, 자물쇠 등도 살펴볼 수 있습니다. 다른 제품이 매출을 증대하는 데 도움이 됨을 제안하는 이 논리를 사용하여 권장 사항을 만들 수 있습니다.
이 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목
이 항목을 보고 다른 항목을 구입한 사람
지정한 항목을 본 것과 동일한 세션에서 가장 자주 구입한 항목을 추천합니다. 이 기준은 이 항목을 본 사용자가 구입한 다른 제품을 반환하고 지정된 제품은 결과 세트에 포함되지 않습니다.
이 논리는 사용자가 이 제품을 본 후 구매한 다른 제품을 반환합니다. 지정된 제품은 결과 세트에 포함되지 않습니다.
이 논리를 사용하면 제품을 본 다른 방문자가 구매한 항목을 표시하는 제품 페이지 등에 권장 사항을 표시하여 교차 판매 기회를 늘릴 수 있습니다. 예를 들어 방문자가 낚싯대를 보고 있는 경우, 권장 사항에는 다른 방문자가 구매한 항목(태클 상자, 장롱 및 낚시 미끼와 같은)이 추가로 표시될 수 있습니다. 방문자가 사이트를 탐색할 때 추가 구매 추천을 제공합니다.
이 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목
이 항목을 구입하고 다른 항목도 구입한 사람
지정한 항목과 동시에 고객이 가장 자주 구입한 항목을 추천합니다.
이 논리는 사용자가 이 제품을 구매한 후 구매한 다른 제품을 반환합니다. 지정된 제품은 결과 세트에 포함되지 않습니다.
이 논리를 사용하면 다른 구매자가 구매한 항목을 표시하는 장바구니 요약 페이지에 추천을 표시하여 교차 판매 기회를 늘릴 수 있습니다. 예를 들어 방문자가 정장을 구매하는 경우, 권장 사항에는 다른 방문자가 정장과 함께 구매한 넥타이, 정장 신발 및 커프링크와 같은 추가 항목이 표시될 수 있습니다. 방문자가 구매를 검토하면, 추가 권장 사항을 제공합니다.
이 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목
Popularity-Based
Popularity-Based 알고리즘 유형을 사용하면 사이트 전체 항목의 전체 인기 또는 사용자가 좋아하거나 가장 많이 본 카테고리, 브랜드, 장르 등의 항목 인기에 따라 권장 사항을 만들 수 있습니다.
Popularity-Based 알고리즘 유형에서 다음 알고리즘을 사용할 수 있습니다.
사이트에서 가장 많이 본 항목 most-viewed
권장 사항은 가장 자주 본 항목에 의해 결정됩니다. 이 항목은 다음과 같이 동작하는 최신/빈도 기준에 의해 결정됩니다.
- 첫 번째 제품 보기에 대해 10포인트
- 모든 후속 보기에 대해 5포인트
- 세션 끝에서 모든 값을 2로 나누기
예를 들어 한 세션에서 surfboardA를 본 다음 surfboardB를 본 경우의 결과는 A: 10, B: 5입니다. 세션이 종료되면 A: 5, B: 2.5가 됩니다. 다음 세션에서 동일한 항목을 볼 경우 값이 A: 15 B: 7.5로 변경됩니다.
홈 페이지 또는 랜딩 페이지 및 오프사이트 광고와 같은 일반 페이지에서 이 알고리즘을 사용합니다.
범주별 최고 조회수 most-viewed-category
제품 대신 카테고리 점수가 산정되는 것만 제외하고, "가장 많이 본 항목"에 사용된 것과 동일한 방법을 사용하여, 가장 많은 활동을 받은 카테고리에 의해 권장 사항이 결정됩니다.
이 항목은 다음과 같이 동작하는 최신/빈도 기준에 의해 결정됩니다.
- 첫 번째 카테고리 보기에 대해 10포인트
- 모든 후속 보기에 대해 5포인트
처음으로 방문한 카테고리에는 10포인트가 부여됩니다. 같은 카테고리에 대한 후속 방문에는 5포인트가 부여됩니다. 각 방문에서 이전에 본 비현재 카테고리는 1포인트씩 감소됩니다.
예를 들어 한 세션에서 categoryA를 본 다음 categoryB를 본 경우의 결과는 A: 9, B: 10입니다. 다음 세션에서 동일한 항목을 보는 경우 값은 A: 20 B: 9로 변경됩니다.
홈 페이지 또는 랜딩 페이지 및 오프사이트 광고와 같은 일반 페이지에서 이 알고리즘을 사용합니다.
가장 많이 본 카테고리 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 카테고리
- 즐겨찾는 범주
항목별 가장 많이 본 항목 속성
사이트에서 가장 많이 본 항목 또는 미디어와 유사한 항목 또는 미디어를 권장합니다.
이 알고리즘을 사용하면 "이름" 또는 "브랜드"와 같이 권장 사항의 기반이 되는 항목 속성을 선택할 수 있습니다.
그런 다음 방문자의 프로필에 저장된 프로필 속성 중 일치시킬 프로필 속성을 선택합니다(예: "Favorite Brand", "Last Item Added to Cart" 또는 "Most Viewed Show").
사이트 전체 최상위 판매자 top-sellers
사이트에서 가장 많이 완료된 주문에 포함된 품목을 표시합니다. 단일 주문에서 여러 개의 동일한 항목은 하나의 주문으로 계산됩니다.
이 알고리즘을 사용하여 사이트의 최상위 판매 항목에 대한 권장 사항을 만들어 전환율과 매출을 높일 수 있습니다. 이 논리는 특히 사이트를 처음 방문하는 사용자에게 적합합니다.
범주별 최상위 판매자
범주별로 가장 완료된 주문에 포함된 품목을 표시합니다. 단일 주문에서 여러 개의 동일한 항목은 하나의 주문으로 계산됩니다.
이 알고리즘을 사용하면 카테고리를 기반으로 사이트의 최상위 판매 항목에 대한 권장 사항을 만들어 전환율과 매출을 높일 수 있습니다. 이 논리는 특히 사이트를 처음 방문하는 사용자에게 적합합니다.
가장 많이 본 카테고리 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 카테고리
- 즐겨찾는 범주
항목 속성별 최상위 판매자
사이트에서 가장 많이 구매한 항목 또는 미디어와 유사한 항목 또는 미디어를 권장합니다.
이 알고리즘을 사용하면 "이름" 또는 "브랜드"와 같이 권장 사항의 기반이 되는 항목 속성을 선택할 수 있습니다.
그런 다음 방문자의 프로필에 저장된 프로필 속성 중 일치시킬 프로필 속성을 선택합니다(예: "Favorite Brand", "Last Item Added to Cart" 또는 "Most Viewed Show").
Analytics 지표 상위
x 이(가) 임의의 Analytics 지표인 "상단 x"를 표시합니다. mbox의 동작 데이터를 사용할 때 최상위 판매됨 또는 최상위 조회됨 (x = "판매됨" 또는 x = "조회됨")을 사용할 수 있습니다. Adobe Analytics의 동작 데이터를 사용하는 경우 x = "장바구니 추가" 또는 다른 Analytics 지표를 사용할 수 있습니다.
Item-Based
Item-Based 권장 사항 유형을 사용하면 사용자가 현재 보고 있거나 최근에 본 항목과 유사한 항목을 찾은 후 권장 사항을 제공할 수 있습니다.
Item-Based 알고리즘 유형에서 다음 알고리즘을 사용할 수 있습니다.
이 항목을 보고 다른 항목도 본 사람 viewed-viewed
지정한 항목을 본 것과 동일한 세션에서 가장 자주 본 항목을 추천합니다.
이 논리는 이 항목을 본 후에 본 다른 제품을 반환합니다. 지정된 제품은 결과 세트에 포함되지 않습니다.
이 논리를 사용하면 항목을 본 다른 방문자도 본 항목을 추천하여 추가 전환 기회를 만들 수 있습니다. 예를 들어 사이트에서 도로 자전거를 보는 방문자는 자전거 헬멧, 자전거 키트, 자물쇠 등도 살펴볼 수 있습니다. 다른 제품이 매출을 증대하는 데 도움이 됨을 제안하는 이 논리를 사용하여 권장 사항을 만들 수 있습니다.
이 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목
이 항목을 보고 다른 항목을 구입한 사람 viewed-bought
지정한 항목을 본 것과 동일한 세션에서 가장 자주 구입한 항목을 추천합니다. 이 기준은 이 항목을 본 사용자가 구입한 다른 제품을 반환하고 지정된 제품은 결과 세트에 포함되지 않습니다.
이 논리는 사용자가 이 제품을 본 후 구매한 다른 제품을 반환합니다. 지정된 제품은 결과 세트에 포함되지 않습니다.
이 논리를 사용하면 제품을 본 다른 방문자가 구매한 항목을 표시하는 제품 페이지 등에 권장 사항을 표시하여 교차 판매 기회를 늘릴 수 있습니다. 예를 들어 방문자가 낚싯대를 보고 있는 경우, 권장 사항에는 다른 방문자가 구매한 항목(태클 상자, 장롱 및 낚시 미끼와 같은)이 추가로 표시될 수 있습니다. 방문자가 사이트를 탐색할 때 추가 구매 추천을 제공합니다.
이 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목
이 항목을 구입하고 다른 항목도 구입한 사람 bought-bought
지정한 항목과 동시에 고객이 가장 자주 구입한 항목을 추천합니다.
이 논리는 사용자가 이 제품을 구매한 후 구매한 다른 제품을 반환합니다. 지정된 제품은 결과 세트에 포함되지 않습니다.
이 논리를 사용하면 다른 구매자가 구매한 항목을 표시하는 장바구니 요약 페이지에 추천을 표시하여 교차 판매 기회를 늘릴 수 있습니다. 예를 들어 방문자가 정장을 구매하는 경우, 권장 사항에는 다른 방문자가 정장과 함께 구매한 넥타이, 정장 신발 및 커프링크와 같은 추가 항목이 표시될 수 있습니다. 방문자가 구매를 검토하면, 추가 권장 사항을 제공합니다.
이 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목
속성이 비슷한 항목 similar-attributes
현재 페이지 활동 또는 과거 방문자 행동을 기반으로 한 항목 또는 미디어와 유사한 항목 또는 미디어를 추천합니다.
속성이 비슷한 항목/미디어를 선택하면 콘텐츠 유사성 규칙을 설정할 수 있는 선택 사항이 표시됩니다.
콘텐츠 유사성을 사용하여 권장 사항을 생성하는 방식은 특정 항목을 본 사용자 및 과거 동작을 기준으로 하는 기타 논리를 사용하는 권장 사항에 표시되지 않는 새 항목에 특히 유용합니다. 또한 콘텐츠 유사성을 사용하여 과거 구입 내역 또는 기타 기록 데이터가 없는 새 방문자를 위한 유용한 권장 사항을 생성할 수도 있습니다.
이 알고리즘을 선택하는 경우 다음 Recommendations 키를 선택할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목
자세한 내용은 콘텐츠 유사성을 참조하세요.
User-Based
사용자 기반 알고리즘 유형을 사용하면 사용자의 비헤이비어에 따라 권장 사항을 제공할 수 있습니다.
User-Based 알고리즘 유형에서 다음 알고리즘을 사용할 수 있습니다.
최근에 본 항목 recently-viewed
방문자의 기록(여러 세션)을 사용하여 디자인의 슬롯 수에 따라 방문자가 마지막으로 본 x 개 항목을 표시합니다.
최근에 본 항목 알고리즘은 주어진 환경에 따른 결과를 반환합니다. 방문자가 서로 다른 환경에 속한 두 사이트 간에 전환하는 경우 각 사이트에는 해당 사이트에서 최근에 본 항목만 표시됩니다. 방문자가 동일한 환경에 있는 두 사이트 간에 전환하는 경우 방문자에게 두 사이트에 대해 최근에 본 동일한 항목이 표시됩니다.
특정 특성이 있는 항목만 표시되도록 Recently Viewed Items/미디어를 필터링할 수 있습니다.
가능한 사용 사례로는 여러 비즈니스를 운영하는 다국적 기업이 여러 디지털 속성에서 방문자 보기 항목을 가질 수 있는 경우를 들 수 있습니다. 이 경우 항목을 본 각각의 속성에 대해서만 표시하도록 최근에 본 항목을 제한할 수 있습니다. 이렇게 하면 최근에 본 항목이 다른 디지털 속성의 사이트에 표시되지 않습니다.
홈 페이지 또는 랜딩 페이지 및 오프사이트 광고와 같은 일반 페이지에서 이 알고리즘을 사용합니다.
추천 항목 recommended-for-you
각 방문자의 검색, 보기 및 구매 기록에 따라 항목을 추천합니다.
이 알고리즘을 사용하여 새 방문자와 돌아오는 방문자 모두에게 개인화된 내용과 경험을 전달할 수 있습니다. 권장 사항 목록은 방문자의 가장 최근 활동에 가중치가 부여되며 세션 중에 업데이트되고 사용자가 사이트를 탐색할 때 더 개인화됩니다.
보기와 구매 모두 권장 품목을 결정하는 데 사용됩니다. 지정한 권장 사항 키(예: 현재 항목)는 선택한 포함 규칙 필터를 적용하는 데 사용됩니다.
예를 들어 다음 작업을 수행할 수 있습니다.
- 특정 기준을 충족하지 않는 항목(제품 품절, 30일 이상 전에 게시된 문서, R 등급의 영화 등)은 제외합니다.
- 포함된 항목을 단일 범주 또는 현재 범주로 제한.
이 알고리즘을 선택하는 경우 다음 필터링 키를 선택할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목
사용자 지정 기준 custom
사용자 지정 기준 알고리즘 유형을 사용하면 업로드하는 사용자 지정 파일에 따라 권장 사항을 제공할 수 있습니다.
권장 사항은 방문자 프로필에 저장된 항목에 따라 결정되며, user.x 또는 profile.x 속성을 사용합니다.
이 옵션을 선택하는 경우 entity.id
값이 프로필 속성에 있어야 합니다.
사용자 지정 속성을 권장 사항의 기반으로 사용할 때에는 사용자 지정 속성을 선택한 다음, 권장 사항 유형을 선택해야 합니다.
자신만의 사용자 지정 기준 출력의 맨 위에서 실시간 필터링을 수행할 수 있습니다. 예를 들어 권장 사항 항목을 방문자가 선호하는 범주 또는 브랜드의 항목으로만 제한할 수 있습니다. 이렇게 하면 오프라인 계산을 실시간 필터링과 결합할 수 있습니다.
이 기능은 Target을(를) 사용하여 오프라인 계산된 권장 사항이나 사용자 지정 조정 목록의 맨 위에 개인화를 추가할 수 있음을 의미합니다. 이 작업에서는 데이터 과학자 및 연구의 힘을 Adobe의 유효성이 증명된 전달, 런타임 필터링, A/B 테스트, 타깃팅, 보고, 통합 등과 결합합니다.
사용자 지정 기준에 포함 규칙을 추가하면 기존의 정적 권장 사항이 방문자의 관심 사항을 기반으로 하는 동적 권장 사항으로 변경됩니다.
가능한 사용 사례는 다음과 같습니다.
- 사용자 지정 조정 목록에서 동영상을 추천하고 싶은데, 방문자가 아직 시청하지 않은 경우에만 추천하고 싶습니다.
- 오프라인 알고리즘을 실행하고 결과를 사용하여 권장 사항을 제공하려고 하지만, 재고 부족 항목은 권장되지 않도록 해야 합니다.
- 이 방문자의 선호 카테고리에 있는 항목만 포함하려 합니다.
권장 사항 키 keys
Recommendation Key 드롭다운 목록에서 다음 권장 사항 키를 사용할 수 있습니다.
현재 항목 current-item
권장 사항은 현재 방문자가 보고 있는 항목에 의해 결정됩니다.
권장 사항에는 특정 항목에 관심이 있는 방문자의 흥미를 끌 수 있는 다른 항목이 표시됩니다.
이 옵션을 선택한 경우 디스플레이 mbox에 매개 변수로 entity.id
값을 전달해야 합니다.
다음 알고리즘과 함께 사용할 수 있습니다.
- Items with similar attributes
- People Who Viewed This, Viewed That
- People Who Viewed This, Bought That
- People Who Bought This, Bought That
다음에서 사이트의 Current Item 권장 사항 키 사용:
- 제품 페이지와 같은 단일 항목 페이지입니다.
- null 검색 결과 페이지는 사용하지 마십시오.
마지막으로 구매한 항목 last-purchased
고유의 각 방문자가 구매한 마지막 항목에 의해 권장 사항이 결정됩니다. 이 값은 자동으로 캡처되므로 페이지에서 값을 전달해서는 안 됩니다.
다음 알고리즘과 함께 사용할 수 있습니다.
- Items with similar attributes
- People Who Viewed This, Viewed That
- People Who Viewed This, Bought That
- People Who Bought This, Bought That
다음에서 사이트의 Last Purchased Item 권장 사항 키 사용:
- 홈 페이지, 내 계정 페이지, 오프사이트 광고
- 제품 페이지 또는 구매와 관련된 페이지에서는 사용하지 마십시오.
사용자 지정 권장 사항 키
사용자 지정 프로필 속성값을 기준으로 하여 권장 사항을 만들 수 있습니다. 예를 들어 방문자가 가장 최근에 큐에 추가한 동영상을 기반으로 권장 동영상을 표시하려 한다고 가정합니다.
-
Recommendation Key 드롭다운 목록에서 사용자 지정 프로필 속성을 선택합니다(예: "Last Show Added to Watchlist").
-
그런 다음 Recommendation Logic 을(를) 선택합니다(예: "People Who Viewed This, Viewed That").
사용자 지정 프로필 속성이 단일 엔티티 ID와 직접 일치하지 않는 경우 엔티티에 대한 일치가 어떻게 일치하는지 Recommendations에 설명해야 합니다. 예를 들어 방문자가 좋아하는 브랜드에서 상위 판매 항목을 표시한다고 가정합니다.
-
Recommendation Key 드롭다운 목록에서 사용자 지정 프로필 속성을 선택합니다(예: "Favorite Brand").
-
그런 다음 이 키와 함께 사용할 Recommendation Logic 을(를) 선택합니다(예: "Top Sellers").
Group By Unique Value Of 옵션이 표시됩니다.
-
선택한 키와 일치하는 엔티티 속성을 선택합니다. 이 경우 "Favorite Brand"는
entity.brand
에 일치합니다.이제 Recommendations에서 각 브랜드에 대한 "Top Sellers" 목록을 생성하고 방문자의 Favorite Brand 프로필 특성에 저장된 값을 기반으로 적절한 "Top Sellers" 목록을 표시합니다.
마지막으로 본 항목 last-viewed
고유의 각 방문자가 본 마지막 항목에 의해 권장 사항이 결정됩니다. 이 값은 자동으로 캡처되므로 페이지에서 값을 전달해서는 안 됩니다.
다음 알고리즘과 함께 사용할 수 있습니다.
- Items with similar attributes
- People Who Viewed This, Viewed That
- People Who Viewed This, Bought That
- People Who Bought This, Bought That
다음에서 사이트의 Last Viewed Item 권장 사항 키 사용:
- 홈 페이지, 내 계정 페이지, 오프사이트 광고
- 제품 페이지 또는 구매와 관련된 페이지에서는 사용하지 마십시오.
가장 많이 본 항목 most-viewed-logic
사이트에서 가장 자주 보는 항목 또는 미디어를 표시합니다.
이 논리를 사용하면 사이트에서 가장 많이 본 항목을 기반으로 한 권장 사항을 표시하여 다른 항목에 대한 전환을 늘릴 수 있습니다. 예를 들어 미디어 사이트는 방문자가 추가 비디오를 보도록 가장 많이 본 비디오에 대한 권장 사항을 홈 페이지에 표시할 수 있습니다.
이 권장 사항 키는 다음 알고리즘과 함께 사용할 수 있습니다.
- Items with similar attributes
- People Who Viewed This, Viewed That
- People Who Viewed This, Bought That
- People Who Bought This, Bought That
현재 카테고리 current-category
권장 사항은 현재 방문자가 보고 있는 제품 카테고리에 의해 결정됩니다.
권장 사항에는 지정된 제품 카테고리의 항목이 표시됩니다.
이 옵션을 선택한 경우 디스플레이 mbox에 매개 변수로 entity.categoryId
값을 전달해야 합니다.
이 권장 사항 키는 다음 알고리즘과 함께 사용할 수 있습니다.
- 최상위 판매자
- 가장 많이 본 항목
다음에서 사이트의 Current Category 권장 사항 키 사용:
- 단일 카테고리 페이지입니다.
- null 검색 결과 페이지는 사용하지 마십시오.
즐겨찾는 범주 favorite-category
권장 사항은 방문자가 선호하는 제품 카테고리에 따라 결정됩니다.
권장 사항에는 지정된 제품 카테고리의 항목이 표시됩니다.
이 옵션을 선택한 경우 디스플레이 mbox에 매개 변수로 entity.categoryId
값을 전달해야 합니다.
이 권장 사항 키는 다음 알고리즘과 함께 사용할 수 있습니다.
- 최상위 판매자
- 가장 많이 본 항목
다음에서 사이트의 Current Category 권장 사항 키 사용:
- 단일 카테고리 페이지입니다.
- null 검색 결과 페이지는 사용하지 마십시오.
사이트 친화성 site-affinity
항목 간 관계의 확실성에 따라 항목을 추천합니다. 포함 규칙 슬라이더를 사용하여 권장 사항을 제시하기 전에 필요한 데이터의 양을 결정하도록 이 기준을 구성할 수 있습니다. 예를 들어 매우 강력함을 선택하면 일치 확실성이 가장 강한 제품이 권장됩니다.
예를 들어 매우 강력한 관심도를 설정하고 디자인에 5개의 항목이 포함되어 있으며 그중 세 개 항목이 연결 임계값의 강도를 충족하는 경우, 최소 강도 요구 사항을 충족하지 않는 두 항목은 권장 사항에 표시되지 않고 정의된 백업 항목으로 교체됩니다. 친화성이 가장 강한 항목부터 표시됩니다.
예를 들어 온라인 소매업체는 방문자가 이전 세션 중에 관심을 보였던 항목을 이후 방문에서 추천할 수 있습니다. 각 방문자의 세션에 대한 활동이 캡처되어 최신성 및 빈도 모델을 기반으로 친화성을 계산합니다. 이 방문자가 사이트로 돌아가면 사이트 친화성은 사이트에 대한 이전 작업을 기반으로 한 권장 사항을 표시하는 데 사용됩니다.
제품 컬렉션과 사이트 행동이 다양한 일부 고객의 경우 사이트 관심도를 낮게 설정하면 더 좋은 결과를 얻을 수도 있습니다.
이 논리는 다음 권장 사항 키와 함께 사용할 수 있습니다.
- 현재 항목
- 마지막으로 구매한 항목
- 마지막으로 본 항목
- 가장 많이 본 항목