Publish a model as a service using Sensei Machine Learning API

NOTE
Data Science 작업 영역은(는) 더 이상 구매할 수 없습니다.
이 설명서는 데이터 과학 작업 영역 이전에 사용 권한이 있는 기존 고객을 대상으로 합니다.

이 튜토리얼 에서는 를 사용하여 Sensei Machine Learning API모델을 서비스로 게시하는 프로세스에 대해 설명합니다.

시작하기

이 튜토리얼을 사용하려면 Adobe Experience Platform 데이터 과학 작업 영역에 대한 작업 이해가 필요합니다. 이 튜토리얼 시작하기 전에 Data Science 작업 영역 개요🔗에서 서비스에 대한 개략적인 소개를 검토하세요.

이 튜토리얼 함께 팔로우하려면 기존 ML 엔진, ML 인스턴스 및 실험가 있어야 합니다. API에서 이를 만드는 방법에 대한 단계는 패키지된 레서피🔗 가져오기에 대한 튜토리얼을 참조하십시오.

마지막으로, 이 튜토리얼을 시작하기 전에 개발자 안내서의 시작하기🔗 섹션에서 이 튜토리얼 전체에서 사용되는 필수 헤더를 포함하여 API를 Sensei Machine Learning 성공적으로 호출하기 위해 알아야 하는 중요한 정보를 검토하세요.

  • {ACCESS_TOKEN}
  • {ORG_ID}
  • {API_KEY}

모든 POST, PUT 및 PATCH 요청에는 추가 헤더가 필요합니다.

  • 콘텐츠 유형: 애플리케이션/json

핵심 용어

다음 표에서는 이 튜토리얼 작업에 사용된 몇 가지 일반적인 용어를 요약한 것입니다.

용어
정의
Machine Learning 인스턴스(ML 인스턴스)
특정 데이터, 매개 변수 및 Sensei 코드를 포함하는 특정 테넌트에 대한 엔진 인스턴스 Sensei 입니다.
실험
교육 실험 실행, 채점 실험 실행 또는 둘 다를 실행하기 위한 umbrella 엔티티입니다.
예약된 실험
사용자 정의 일정에 의해 관리되는 교육 또는 채점 실험 실행의 자동화를 설명하는 용어입니다.
실험 실행
교육 또는 채점 실험의 특정 인스턴스. 특정 실험의 여러 실험 실행은 교육 또는 채점에 사용되는 데이터 세트 값이 다를 수 있습니다.
훈련된 모델
검증, 평가 및 최종 모델에 도달하기 전에 기능 엔지니어링을 실험하고 프로세스를 통해 생성된 머신 러닝 모델입니다.
게시된 모델
교육, 유효성 검사 및 평가 후에 최종 버전 모델이 도착했습니다.
기계 학습 서비스(ML 서비스)
API 끝점을 사용하여 교육 및 채점에 대한 온디맨드 요청을 지원하기 위해 서비스로 배포된 ML 인스턴스. 훈련된 기존 실험 실행을 사용하여 ML 서비스를 만들 수도 있습니다.

기존 교육 실험 실행 및 예약된 점수 매기기를 사용하여 ML 서비스 만들기

교육 실험 Run as an ML Service를 게시 때 점수 매기기 실험 POST 요청의 페이로드 실행에 대한 세부 정보를 제공하여 점수 매기기를 예약할 수 있습니다. 이로 인해 점수 매기기를 위해 예약된 실험 엔터티가 만들어집니다.

API 포맷

POST /mlServices

요청

curl -X POST
  https://platform.adobe.io/data/sensei/mlServices
  -H 'Authorization: {ACCESS_TOKEN}'
  -H 'x-api-key: {API_KEY}'
  -H 'x-gw-ims-org-id: {ORG_ID}'
  -H 'Content-Type: application/json'
  -d '{
        "name": "Service name",
        "description": "Service description",
        "trainingExperimentId": "c4155146-b38f-4a8b-86d8-1de3838c8d87",
        "trainingExperimentRunId": "5c5af39c73fcec153117eed1",
        "scoringDataSetId": "5c5af39c73fcec153117eed1",
        "scoringTimeframe": "20000",
        "scoringSchedule": {
          "startTime": "2019-04-09T00:00",
          "endTime": "2019-04-10T00:00",
          "cron": "10 * * * *"
        }
      }'
속성
설명
mlInstanceId
기존 ML 인스턴스 식별, ML 서비스를 만드는 데 사용되는 교육 실험 실행은 이 특정 ML 인스턴스에 해당해야 합니다.
trainingExperimentId
ML 인스턴스 식별에 해당하는 실험 식별.
trainingExperimentRunId
ML 서비스 게시에 사용되는 특정 교육 실험 실행.
scoringDataSetId
예약된 점수 매기기 실험 실행에 사용할 특정 데이터 집합을 참조하는 ID입니다.
scoringTimeframe
실험 실행의 점수를 매기는 데 사용할 데이터를 필터링하는 시간(분)을 나타내는 정수 값입니다. 예를 들어 지난 10080분 또는 168시간 동안의 평균 데이터 값이 10080 각 예약된 점수 매기기 실험 실행에 사용됩니다. 값은 0 데이터를 필터링하지 않으며 데이터 세트 내의 모든 데이터가 점수 매기기에 사용됩니다.
scoringSchedule
예약된 점수 매기기 실험 실행에 대한 세부 정보가 포함되어 있습니다.
scoringSchedule.startTime
채점을 시작할 시기를 나타내는 날짜/시간입니다.
scoringSchedule.endTime
채점을 시작할 시기를 나타내는 날짜/시간입니다.
scoringSchedule.cron
실험 실행을 평가할 간격을 나타내는 크론 값.

응답

응답이 성공하면 해당 채점 실험에 대한 고유한 idscoringExperimentId을(를) 포함하여 새로 만든 ML 서비스의 세부 정보가 반환됩니다.

{
  "id": "string",
  "name": "string",
  "description": "string",
  "mlInstanceId": "string",
  "trainingExperimentId": "string",
  "trainingExperimentRunId": "string",
  "scoringExperimentId": "string",
  "scoringDataSetId": "string",
  "scoringTimeframe": "integer",
  "scoringSchedule": {
    "startTime": "2019-03-13T00:00",
    "endTime": "2019-03-14T00:00",
    "cron": "30 * * * *"
  },
  "created": "2019-04-08T14:45:25.981Z",
  "updated": "2019-04-08T14:45:25.981Z"
}

기존 ML 인스턴스에서 ML 서비스 생성

특정 사용 사례 및 요구 사항에 따라 ML 인스턴스를 사용하여 ML 서비스를 생성하는 것은 교육 예약 및 실험 실행 점수 매기기 측면에서 유연합니다. 이 튜토리얼에서는 다음과 같은 특정 사례를 살펴봅니다.

ML 서비스는 교육 또는 채점 실험 예약 없이 ML 인스턴스를 사용하여 만들 수 있습니다. 이러한 ML 서비스는 일반적인 실험 개체 및 교육 및 채점을 위한 단일 실험 실행을 만듭니다.

채점을 위한 실험이 예약된 ML 서비스 ml-service-with-scheduled-experiment-for-scoring

채점을 위해 예약된 실험 실행이 포함된 ML 인스턴스를 게시하여 ML 서비스를 생성할 수 있으며, 이 경우 교육을 위한 일반 실험 엔터티가 생성됩니다. 교육 실험 실행이 생성되고 모든 예약된 점수 실험 실행에 사용됩니다. mlInstanceIdML 서비스를 만드는 데 필요한 , trainingDataSetId, 및 scoringDataSetId 해당 항목이 존재하고 유효한 값인지 확인합니다.

API 포맷

POST /mlServices

요청

curl -X POST
  https://platform.adobe.io/data/sensei/mlServices
  -H 'Authorization: {ACCESS_TOKEN}'
  -H 'x-api-key: {API_KEY}'
  -H 'x-gw-ims-org-id: {ORG_ID}'
  -H 'x-sandbox-name: {SANDBOX_NAME}'
  -d '{
        "name": "Service name",
        "description": "Service description",
        "mlInstanceId": "c4155146-b38f-4a8b-86d8-1de3838c8d87",
        "trainingDataSetId": "5c5af39c73fcec153117eed1",
        "trainingTimeframe": "10000",
        "scoringDataSetId": "5c5af39c73fcec153117eed1",
        "scoringTimeframe": "20000",
        "scoringSchedule": {
          "startTime": "2019-04-09T00:00",
          "endTime": "2019-04-10T00:00",
          "cron": "10 * * * *"
        }
      }'
JSON 키
설명
mlInstanceId
ML 서비스를 생성하는 데 사용된 ML 인스턴스를 나타내는 기존 ML 인스턴스 ID입니다.
trainingDataSetId
교육 실험에 사용할 특정 데이터 세트를 나타내는 ID입니다.
trainingTimeframe
교육 실험에 사용할 데이터 필터링의 시간(분)을 나타내는 정수 값입니다. 예를 들어 지난 10080분 또는 168시간 동안의 평균 데이터 값이 "10080" 교육 실험 실행에 사용됩니다. 의 "0" 값은 데이터를 필터링하지 않으며 데이터 세트 내의 모든 데이터가 교육 목적으로 사용됩니다.
scoringDataSetId
예약된 점수 매기기 실험 실행에 사용할 특정 데이터 집합을 참조하는 ID입니다.
scoringTimeframe
실험 실행의 점수를 매기는 데 사용할 데이터를 필터링하는 시간(분)을 나타내는 정수 값입니다. 예를 들어 지난 10080분 또는 168시간 동안의 평균 데이터 값이 "10080" 각 예약된 점수 매기기 실험 실행에 사용됩니다. 값은 "0" 데이터를 필터링하지 않으며 데이터 세트 내의 모든 데이터가 점수 매기기에 사용됩니다.
scoringSchedule
예약된 점수 매기기 실험 실행에 대한 세부 정보가 포함되어 있습니다.
scoringSchedule.startTime
채점을 시작할 시기를 나타내는 날짜/시간입니다.
scoringSchedule.endTime
채점을 시작할 시기를 나타내는 날짜/시간입니다.
scoringSchedule.cron
실험 런에 점수를 매길 구간을 나타내는 Cron 값입니다.

응답

성공적인 응답은 새로 만든 ML 서비스의 세부 정보를 반환합니다. 여기에는 서비스의 고유한 idtrainingExperimentId 해당 교육 및 점수 매기기 실험에 대한 및 scoringExperimentId 가 각각 포함됩니다.

{
  "id": "string",
  "name": "string",
  "description": "string",
  "mlInstanceId": "string",
  "trainingExperimentId": "string",
  "trainingDataSetId": "string",
  "trainingTimeframe": "integer",
  "scoringExperimentId": "string",
  "scoringDataSetId": "string",
  "scoringTimeframe": "integer",
  "scoringSchedule": {
    "startTime": "2019-04-09T00:00",
    "endTime": "2019-04-10T00:00",
    "cron": "10 * * * *"
  },
  "created": "2019-04-09T08:58:10.956Z",
  "updated": "2019-04-09T08:58:10.956Z"
}

교육 및 채점을 위한 예약된 실험이 있는 ML 서비스 ml-service-with-scheduled-experiments-for-training-and-scoring

예약된 교육 및 점수 매기기 실험 실행을 사용하여 기존 ML 인스턴스를 ML 서비스로 게시하려면 교육 및 점수 매기기 일정을 모두 제공해야 합니다. 이 구성의 ML 서비스가 생성되면 교육 및 채점 모두에 대해 예약된 실험 엔터티도 생성됩니다. 교육 및 채점 일정이 같을 필요는 없습니다. 채점 작업 실행 중에 예약된 교육 실험 실행에서 생성된 최신 교육 모델을 가져와 예약된 채점 실행에 사용합니다.

API 형식

POST /mlServices

요청

curl -X POST 'https://platform.adobe.io/data/sensei/mlServices'
  -H 'Authorization: Bearer {ACCESS_TOKEN}'
  -H 'x-api-key: {API_KEY}'
  -H 'x-gw-ims-org-id: {ORG_ID}'
  -H 'x-sandbox-name: {SANDBOX_NAME}'
  -d '{
        "name": "string",
        "description": "string",
        "mlInstanceId": "string",
        "trainingDataSetId": "string",
        "trainingTimeframe": "string",
        "scoringDataSetId": "string",
        "scoringTimeframe": "string",
        "trainingSchedule": {
          "startTime": "2019-04-09T00:00",
          "endTime": "2019-04-10T00:00",
          "cron": "10 * * * *"
        },
        "scoringSchedule": {
          "startTime": "2019-04-09T00:00",
          "endTime": "2019-04-10T00:00",
          "cron": "10 * * * *"
        }
      }'
JSON 키
설명
mlInstanceId
ML 서비스를 만드는 데 사용되는 ML 인스턴스를 나타내는 기존 ML 인스턴스 식별.
trainingDataSetId
교육 실험에 사용할 특정 데이터 세트를 참조하는 식별
trainingTimeframe
교육 실험에 사용될 데이터 필터링에 걸리는 시간을 나타내는 정수 값입니다. 예를 들어 값 "10080"은(는) 지난 10080분 또는 168시간의 데이터가 교육 실험 실행에 사용됨을 의미합니다. "0" 값은 데이터를 필터링하지 않으며 데이터 집합 내의 모든 데이터가 교육에 사용됩니다.
scoringDataSetId
예약된 채점 실험 실행에 사용될 특정 데이터 세트를 참조하는 식별.
scoringTimeframe
실험 실행 채점에 사용될 데이터 필터링의 시간(분)을 나타내는 정수 값입니다. 예를 들어 값 "10080"은(는) 각 예약된 채점 실험 실행에 대해 지난 10080분 또는 168시간의 데이터가 사용됨을 의미합니다. "0" 값은 데이터를 필터링하지 않으며 데이터 집합 내의 모든 데이터는 채점에 사용됩니다.
trainingSchedule
예약된 교육 실험 실행에 대한 세부 정보를 포함합니다.
scoringSchedule
예약된 점수 매기기 실험 실행에 대한 세부 정보가 포함되어 있습니다.
scoringSchedule.startTime
채점을 시작할 시기를 나타내는 날짜/시간입니다.
scoringSchedule.endTime
채점을 시작할 시기를 나타내는 날짜/시간입니다.
scoringSchedule.cron
실험 런에 점수를 매길 구간을 나타내는 Cron 값입니다.

응답

성공적인 응답은 새로 생성된 ML 서비스의 세부 정보를 반환합니다. 여기에는 서비스의 고유한 id과(와) 해당 교육 및 채점 실험의 trainingExperimentIdscoringExperimentId이(가) 각각 포함됩니다. 아래 예제 응답에서 trainingSchedulescoringSchedule이(가) 있으면 교육 및 채점을 위한 실험 엔터티가 예약된 실험임을 나타냅니다.

{
  "id": "string",
  "name": "string",
  "description": "string",
  "mlInstanceId": "string",
  "trainingExperimentId": "string",
  "trainingDataSetId": "string",
  "trainingTimeframe": "integer",
  "scoringExperimentId": "string",
  "scoringDataSetId": "string",,
  "scoringTimeframe": "integer",
  "trainingSchedule": {
    "startTime": "2019-04-09T00:00",
    "endTime": "2019-04-10T00:00",
    "cron": "10 * * * *"
  },
  "scoringSchedule": {
    "startTime": "2019-04-09T00:00",
    "endTime": "2019-04-10T00:00",
    "cron": "10 * * * *"
  },
  "created": "2019-04-09T08:58:10.956Z",
  "updated": "2019-04-09T08:58:10.956Z"
}

ML 서비스 조회 retrieving-ml-services

/mlServicesGET 요청을 하고 경로에 ML 서비스의 고유한 id을(를) 제공하여 기존 ML 서비스를 조회할 수 있습니다.

API 형식

GET /mlServices/{SERVICE_ID}
매개변수
설명
{SERVICE_ID}
조회 중인 ML 서비스의 고유한 id입니다.

요청

curl -X GET 'https://platform.adobe.io/data/sensei/mlServices/{SERVICE_ID}'
  -H 'Authorization: Bearer {ACCESS_TOKEN}'
  -H 'x-api-key: {API_KEY}'
  -H 'x-gw-ims-org-id: {ORG_ID}'
  -H 'x-sandbox-name: {SANDBOX_NAME}'

응답

성공적인 응답은 ML 서비스의 세부 정보를 반환합니다.

{
  "id": "string",
  "name": "string",
  "description": "string",
  "mlInstanceId": "string",
  "trainingExperimentId": "string",
  "trainingDataSetId": "string",
  "trainingTimeframe": "integer",
  "scoringExperimentId": "string",
  "scoringDataSetId": "string",
  "scoringTimeframe": "integer",
  "trainingSchedule": {
    "startTime": "2019-04-09T00:00",
    "endTime": "2019-04-10T00:00",
    "cron": "10 * * * *"
  },
  "scoringSchedule": {
    "startTime": "2019-04-09T00:00",
    "endTime": "2019-04-10T00:00",
    "cron": "10 * * * *"
  },
  "created": "2019-05-13T23:46:03.478Z",
  "updated": "2019-05-13T23:46:03.478Z"
}
NOTE
다른 ML 서비스를 검색하면 키-값 쌍이 더 많거나 적은 응답이 반환될 수 있습니다. 위의 응답은 예약된 교육 및 채점 실험 실행 🔗이(가) 모두 있는 ML 서비스를 나타냅니다.

교육 또는 채점 예약

이미 게시된 ML 서비스에 대한 점수 매기기 및 교육을 예약하려면 에 /mlServices대한 요청으로 기존 ML 서비스를 PUT 업데이트하면 됩니다.

API 포맷

PUT /mlServices/{SERVICE_ID}
매개변수
설명
{SERVICE_ID}
업데이트하는 ML 서비스의 고유한 id입니다.

요청

다음 요청은 각각의 startTime, endTimecron 키와 함께 trainingSchedulescoringSchedule 키를 추가하여 기존 ML 서비스에 대한 교육 및 채점을 예약합니다.

curl -X PUT 'https://platform.adobe.io/data/sensei/mlServices/{SERVICE_ID}'
  -H 'Authorization: {ACCESS_TOKEN}'
  -H 'x-api-key: {API_KEY}'
  -H 'x-gw-ims-org-id: {ORG_ID}'
  -H 'x-sandbox-name: {SANDBOX_NAME}'
  -d '{
        "name": "string",
        "description": "string",
        "mlInstanceId": "string",
        "trainingExperimentId": "string",
        "trainingDataSetId": "string",
        "trainingTimeframe": "integer",
        "scoringExperimentId": "string",
        "scoringDataSetId": "string",
        "scoringTimeframe": "integer",
        "trainingSchedule": {
          "startTime": "2019-04-09T00:00",
          "endTime": "2019-04-11T00:00",
          "cron": "20 * * * *"
        },
        "scoringSchedule": {
          "startTime": "2019-04-09T00:00",
          "endTime": "2019-04-11T00:00",
          "cron": "20 * * * *"
        }
      }'
WARNING
기존의 예약된 교육 및 점수 매기기 작업을 수정 startTime 하지 마십시오. 수정 startTime 해야 하는 경우 동일한 모델을 게시하고 교육 및 점수 매기기 작업을 다시 예약하는 것이 좋습니다.

응답

성공적인 응답은 업데이트된 ML 서비스의 세부 정보를 반환합니다.

{
  "id": "string",
  "name": "string",
  "description": "string",
  "mlInstanceId": "string",
  "trainingExperimentId": "string",
  "trainingDataSetId": "string",
  "trainingTimeframe": "integer",
  "scoringExperimentId": "string",
  "scoringDataSetId": "string",
  "scoringTimeframe": "integer",
  "trainingSchedule": {
    "startTime": "2019-04-09T00:00",
    "endTime": "2019-04-11T00:00",
    "cron": "20 * * * *"
  },
  "scoringSchedule": {
    "startTime": "2019-04-09T00:00",
    "endTime": "2019-04-11T00:00",
    "cron": "20 * * * *"
  },
  "created": "2019-04-09T08:58:10.956Z",
  "updated": "2019-04-09T09:43:55.563Z"
}
recommendation-more-help
cc79fe26-64da-411e-a6b9-5b650f53e4e9