Jupyterlab개 전자 필기장의 데이터 액세스
작성 대상:
- 사용자
- 개발자
지원되는 각 커널은 노트북 내의 데이터 세트에서 Experience Platform 데이터를 읽을 수 있는 내장된 기능을 제공합니다. 현재 Adobe Experience Platform Data Science Workspace의 JupyterLab은 Python, R, PySpark 및 Scala용 노트북을 지원합니다. 그러나 데이터 페이지 매김에 대한 지원은 Python 및 R 전자 필기장으로 제한됩니다. 이 안내서에서는 JupyterLab Notebooks를 사용하여 데이터에 액세스하는 방법에 중점을 둡니다.
시작하기
이 안내서를 읽기 전에 JupyterLab 사용 안내서를 검토하여 JupyterLab에 대한 자세한 소개와 Data Science Workspace에서의 역할에 대해 알아보십시오.
노트북 데이터 제한
다음 정보는 읽을 수 있는 최대 데이터 양, 사용된 데이터 유형 및 데이터를 읽는 데 걸리는 예상 기간을 정의합니다.
Python 및 R의 경우 40GB RAM으로 구성된 노트북 서버가 벤치마크에 사용되었습니다. PySpark와 Scala의 경우 64GB RAM, 8코어, 2DBU로 구성된 데이터 클러스터(최대 4명의 작업자가 있음)를 아래 설명된 벤치마크에 사용했습니다.
사용되는 ExperienceEvent 스키마 데이터는 1천(1K) 행부터 최대 10억(1B) 행 범위까지 크기가 다양했습니다. PySpark 및 Spark 지표의 경우 10일의 날짜 범위가 XDM 데이터에 사용되었습니다.
임시 스키마 데이터는 Query Service CTAS(Create Table as Select)를 사용하여 사전 처리되었습니다. 이 데이터 또한 최대 10억 행(1B)에 이르는 1,000행(1K)부터 시작하여 크기가 다양했다.
배치 모드와 대화형 모드를 사용해야 하는 경우
PySpark 및 Scala notebooks로 데이터 세트를 읽을 때 대화형 모드 또는 일괄 처리 모드를 사용하여 데이터 세트를 읽을 수 있습니다. 대화형 은 빠른 결과를 위해 만들어지지만 배치 모드는 큰 데이터 세트를 위한 것입니다.
Python 전자 필기장 데이터 제한
XDM ExperienceEvent 스키마: 22분 이내에 최대 200만 행(디스크의 6.1GB 데이터)의 XDM 데이터를 읽을 수 있어야 합니다. 행을 더 추가하면 오류가 발생할 수 있습니다.
임시 스키마: 14분 이내에 XDM(임시)이 아닌 데이터의 최대 500만 행(디스크의 5.6GB 데이터)을 읽을 수 있어야 합니다. 행을 더 추가하면 오류가 발생할 수 있습니다.
R 노트북 데이터 제한
XDM ExperienceEvent 스키마: 13분 이내에 최대 100만 행의 XDM 데이터(디스크의 3GB 데이터)를 읽을 수 있어야 합니다.
임시 스키마: 약 10분 내에 최대 3백만 행의 임시 데이터(디스크에 있는 293MB 데이터)를 읽을 수 있어야 합니다.
PySpark(Python 커널) 전자 필기장 데이터 제한:
XDM ExperienceEvent 스키마: 대화형 모드에서는 최대 500만 행(디스크의 13.42GB 데이터)의 XDM 데이터를 약 20분 내에 읽을 수 있어야 합니다. 대화형 모드는 최대 500만 개의 행만 지원합니다. 더 큰 데이터 세트를 읽으려면 배치 모드로 전환하는 것이 좋습니다. 배치 모드에서는 약 14시간 내에 최대 5억 행(디스크의 경우 1.31TB 이하 데이터)의 XDM 데이터를 읽을 수 있어야 합니다.
임시 스키마: 대화형 모드에서는 XDM이 아닌 데이터의 최대 5백만 행(디스크의 5.36GB 데이터)을 3분 이내에 읽을 수 있어야 합니다. 일괄 처리 모드에서는 XDM이 아닌 데이터의 최대 10억 행(디스크의 경우 1.05TB 이하 데이터)을 약 18분 내에 읽을 수 있어야 합니다.
Spark(Scala kernel) 전자 필기장 데이터 제한:
XDM ExperienceEvent 스키마: 대화형 모드에서는 약 18분 내에 최대 500만 행(디스크의 13.42GB 데이터)의 XDM 데이터를 읽을 수 있어야 합니다. 대화형 모드는 최대 500만 개의 행만 지원합니다. 더 큰 데이터 세트를 읽으려면 배치 모드로 전환하는 것이 좋습니다. 배치 모드에서는 약 14시간 내에 최대 5억 행(디스크의 경우 1.31TB 이하 데이터)의 XDM 데이터를 읽을 수 있어야 합니다.
임시 스키마: 대화형 모드에서는 XDM이 아닌 데이터의 최대 5백만 행(디스크의 5.36GB 데이터)을 3분 이내에 읽을 수 있어야 합니다. 배치 모드에서는 약 16분 내에 XDM이 아닌 데이터의 최대 10억 행(디스크의 경우 1.05TB 이하 데이터)을 읽을 수 있어야 합니다.
Python 노트북
Python개의 전자 필기장을 사용하면 데이터 세트에 액세스할 때 데이터에 페이지를 매길 수 있습니다. 페이지 매김이 있거나 없는 데이터를 읽는 샘플 코드는 아래에 나와 있습니다. 사용 가능한 스타터 Python 노트북에 대한 자세한 내용은 JupyterLab 사용 안내서의 JupyterLab 런처 섹션을 참조하십시오.
아래 Python 설명서에서는 다음 개념을 간략하게 설명합니다.
Python의 데이터 세트에서 읽기
페이지 매김 없음:
다음 코드를 실행하면 전체 데이터 세트가 읽힙니다. 실행이 성공하면 데이터는 df
변수에 의해 참조되는 Pandas 데이터 프레임으로 저장됩니다.
# Python
from platform_sdk.dataset_reader import DatasetReader
dataset_reader = DatasetReader(get_platform_sdk_client_context(), dataset_id="{DATASET_ID}")
df = dataset_reader.read()
df.head()
페이지 매김 사용:
다음 코드를 실행하면 지정된 데이터 세트에서 데이터가 읽힙니다. 페이지 매김은 각각 함수 limit()
및 offset()
을(를) 통해 데이터를 제한하고 오프셋함으로써 수행됩니다. 데이터 제한은 읽을 데이터 포인트의 최대 수를 의미하며, 오프셋은 데이터를 읽기 전에 건너뛸 데이터 포인트의 수를 의미합니다. 읽기 작업이 성공적으로 실행되면 데이터가 df
변수에 의해 참조된 Pandas 데이터 프레임으로 저장됩니다.
# Python
from platform_sdk.dataset_reader import DatasetReader
dataset_reader = DatasetReader(get_platform_sdk_client_context(), dataset_id="{DATASET_ID}")
df = dataset_reader.limit(100).offset(10).read()
Python의 데이터 세트에 쓰기
JupyterLab 노트북의 데이터 세트에 작성하려면 JupyterLab의 왼쪽 탐색에서 데이터 아이콘 탭(아래 강조 표시)을 선택합니다. 데이터 세트 및 스키마 디렉터리가 나타납니다. 데이터 세트 를 선택하고 마우스 오른쪽 단추를 클릭한 다음 사용할 데이터 세트의 드롭다운 메뉴에서 전자 필기장에 데이터 쓰기 옵션을 선택합니다. 전자 필기장 하단에 실행 가능한 코드 항목이 나타납니다.
- 전자 필기장에 데이터 쓰기 를 사용하여 선택한 데이터 집합으로 쓰기 셀을 생성합니다.
- Notebook에서 데이터 탐색 을 사용하여 선택한 데이터 집합으로 읽기 셀을 생성합니다.
- 전자 필기장의 데이터 쿼리 를 사용하여 선택한 데이터 집합으로 기본 쿼리 셀을 생성합니다.
또는 다음 코드 셀을 복사하여 붙여넣을 수 있습니다. {DATASET_ID}
과(와) {PANDA_DATAFRAME}
을(를) 모두 바꿉니다.
from platform_sdk.models import Dataset
from platform_sdk.dataset_writer import DatasetWriter
dataset = Dataset(get_platform_sdk_client_context()).get_by_id(dataset_id="{DATASET_ID}")
dataset_writer = DatasetWriter(get_platform_sdk_client_context(), dataset)
write_tracker = dataset_writer.write({PANDA_DATAFRAME}, file_format='json')
Python의 Query Service을(를) 사용하여 데이터 쿼리
Experience Platform의 JupyterLab에서 Python 전자 필기장의 SQL을 사용하여 Adobe Experience Platform 쿼리 서비스를 통해 데이터에 액세스할 수 있습니다. Query Service을(를) 통해 데이터에 액세스하면 실행 시간이 길어 대용량 데이터 세트를 처리하는 데 유용할 수 있습니다. Query Service을(를) 사용하여 데이터를 쿼리하는 데 10분의 처리 시간 제한이 있습니다.
JupyterLab에서 Query Service을(를) 사용하기 전에 Query Service SQL 구문을(를) 이해하고 있는지 확인하십시오.
Query Service을(를) 사용하여 데이터를 쿼리하려면 대상 데이터 집합의 이름을 제공해야 합니다. 데이터 탐색기 를 사용하여 원하는 데이터 집합을 찾아 필요한 코드 셀을 생성할 수 있습니다. 데이터 집합 목록을 마우스 오른쪽 단추로 클릭하고 전자 필기장의 데이터 쿼리 를 클릭하여 전자 필기장에 두 개의 코드 셀을 생성합니다. 이 두 세포는 아래에 더 자세히 설명되어 있습니다.
JupyterLab에서 Query Service을(를) 활용하려면 먼저 작업 중인 Python 전자 필기장과 Query Service 간에 연결을 만들어야 합니다. 이는 처음 생성된 셀을 실행함으로써 달성될 수 있다.
qs_connect()
두 번째로 생성된 셀에서는 SQL 쿼리 앞에 첫 번째 행을 정의해야 합니다. 기본적으로 생성된 셀은 쿼리 결과를 Pandas 데이터 프레임으로서 저장하는 선택적 변수(df0
)를 정의합니다.-c QS_CONNECTION
인수는 필수이며 커널에 Query Service에 대해 SQL 쿼리를 실행하도록 지시합니다. 추가 인수 목록은 부록을 참조하십시오.
%%read_sql df0 -c QS_CONNECTION
SELECT *
FROM name_of_the_dataset
LIMIT 10
/* Querying table "name_of_the_dataset" (datasetId: {DATASET_ID})*/
다음 예제와 같이 문자열 형식의 구문을 사용하고 중괄호({}
)로 변수를 줄바꿈하여 SQL 쿼리 내에서 Python 변수를 직접 참조할 수 있습니다.
table_name = 'name_of_the_dataset'
table_columns = ','.join(['col_1','col_2','col_3'])
%%read_sql demo -c QS_CONNECTION
SELECT {table_columns}
FROM {table_name}
ExperienceEvent 데이터 필터링
Python 전자 필기장에서 ExperienceEvent 데이터 집합에 액세스하고 필터링하려면 논리 연산자를 사용하여 특정 시간 범위를 정의하는 필터 규칙과 함께 데이터 집합 ID({DATASET_ID}
)를 제공해야 합니다. 시간 범위가 정의된 경우 지정된 페이지 매김이 무시되고 전체 데이터 세트가 고려됩니다.
필터링 연산자 목록은 아래에 설명되어 있습니다.
eq()
: 같음gt()
: 보다 큼ge()
: 크거나 같음lt()
: 보다 작음le()
: 작거나 같음And()
: 논리 AND 연산자Or()
: 논리 OR 연산자
다음 셀은 2019년 1월 1일부터 2019년 12월 31일 말까지 독점적으로 존재하는 데이터에 ExperienceEvent 데이터 집합을 필터링합니다.
# Python
from platform_sdk.dataset_reader import DatasetReader
dataset_reader = DatasetReader(get_platform_sdk_client_context(), dataset_id="{DATASET_ID}")
df = dataset_reader.\
where(dataset_reader["timestamp"].gt("2019-01-01 00:00:00").\
And(dataset_reader["timestamp"].lt("2019-12-31 23:59:59"))\
).read()
R 노트북
R Notebooks에서는 데이터 세트에 액세스할 때 데이터에 페이지를 지정할 수 있습니다. 페이지 매김이 있거나 없는 데이터를 읽는 샘플 코드는 아래에 나와 있습니다. 사용 가능한 스타터 R 노트북에 대한 자세한 내용은 JupyterLab 사용 안내서의 JupyterLab 런처 섹션을 참조하십시오.
아래 R 설명서에서는 다음 개념을 간략하게 설명합니다.
R의 데이터 세트에서 읽기
페이지 매김 없음:
다음 코드를 실행하면 전체 데이터 세트가 읽힙니다. 실행이 성공하면 데이터는 df0
변수에 의해 참조되는 Pandas 데이터 프레임으로 저장됩니다.
# R
library(reticulate)
use_python("/usr/local/bin/ipython")
psdk <- import("platform_sdk")
datetime <- import("datetime", convert = FALSE)
py_run_file("~/.ipython/profile_default/startup/platform_sdk_context.py")
DatasetReader <- psdk$dataset_reader$DatasetReader
dataset_reader <- DatasetReader(py$get_platform_sdk_client_context(), dataset_id="{DATASET_ID}")
df0 <- dataset_reader$read()
head(df0)
페이지 매김 사용:
다음 코드를 실행하면 지정된 데이터 세트에서 데이터가 읽힙니다. 페이지 매김은 각각 함수 limit()
및 offset()
을(를) 통해 데이터를 제한하고 오프셋함으로써 수행됩니다. 데이터 제한은 읽을 데이터 포인트의 최대 수를 의미하며, 오프셋은 데이터를 읽기 전에 건너뛸 데이터 포인트의 수를 의미합니다. 읽기 작업이 성공적으로 실행되면 데이터가 df0
변수에 의해 참조된 Pandas 데이터 프레임으로 저장됩니다.
# R
library(reticulate)
use_python("/usr/local/bin/ipython")
psdk <- import("platform_sdk")
datetime <- import("datetime", convert = FALSE)
py_run_file("~/.ipython/profile_default/startup/platform_sdk_context.py")
DatasetReader <- psdk$dataset_reader$DatasetReader
dataset_reader <- DatasetReader(py$get_platform_sdk_client_context(), dataset_id="{DATASET_ID}")
df0 <- dataset_reader$limit(100L)$offset(10L)$read()
R의 데이터 세트에 쓰기
JupyterLab 노트북의 데이터 세트에 작성하려면 JupyterLab의 왼쪽 탐색에서 데이터 아이콘 탭(아래 강조 표시)을 선택합니다. 데이터 세트 및 스키마 디렉터리가 나타납니다. 데이터 세트 를 선택하고 마우스 오른쪽 단추를 클릭한 다음 사용할 데이터 세트의 드롭다운 메뉴에서 전자 필기장에 데이터 쓰기 옵션을 선택합니다. 전자 필기장 하단에 실행 가능한 코드 항목이 나타납니다.
- 전자 필기장에 데이터 쓰기 를 사용하여 선택한 데이터 집합으로 쓰기 셀을 생성합니다.
- Notebook에서 데이터 탐색 을 사용하여 선택한 데이터 집합으로 읽기 셀을 생성합니다.
또는 다음 코드 셀을 복사하여 붙여넣을 수 있습니다.
psdk <- import("platform_sdk")
dataset <- psdk$models$Dataset(py$get_platform_sdk_client_context())$get_by_id(dataset_id="{DATASET_ID}")
dataset_writer <- psdk$dataset_writer$DatasetWriter(py$get_platform_sdk_client_context(), dataset)
write_tracker <- dataset_writer$write(df, file_format='json')
ExperienceEvent 데이터 필터링
R 전자 필기장에서 ExperienceEvent 데이터 집합에 액세스하고 필터링하려면 논리 연산자를 사용하여 특정 시간 범위를 정의하는 필터 규칙과 함께 데이터 집합 ID({DATASET_ID}
)를 제공해야 합니다. 시간 범위가 정의된 경우 지정된 페이지 매김이 무시되고 전체 데이터 세트가 고려됩니다.
필터링 연산자 목록은 아래에 설명되어 있습니다.
eq()
: 같음gt()
: 보다 큼ge()
: 크거나 같음lt()
: 보다 작음le()
: 작거나 같음And()
: 논리 AND 연산자Or()
: 논리 OR 연산자
다음 셀은 2019년 1월 1일부터 2019년 12월 31일 말까지 독점적으로 존재하는 데이터에 ExperienceEvent 데이터 집합을 필터링합니다.
# R
library(reticulate)
use_python("/usr/local/bin/ipython")
psdk <- import("platform_sdk")
datetime <- import("datetime", convert = FALSE)
py_run_file("~/.ipython/profile_default/startup/platform_sdk_context.py")
client_context <- py$PLATFORM_SDK_CLIENT_CONTEXT
DatasetReader <- psdk$dataset_reader$DatasetReader
dataset_reader <- DatasetReader(py$get_platform_sdk_client_context(), dataset_id="{DATASET_ID}")
df0 <- dataset_reader$
where(dataset_reader["timestamp"]$gt("2019-01-01 00:00:00")$
And(dataset_reader["timestamp"]$lt("2019-12-31 23:59:59"))
)$read()
PySpark 3 노트북
아래 PySpark 설명서는 다음 개념을 간략하게 설명합니다.
sparkSession 초기화 중
모든 Spark 2.4 전자 필기장에는 다음 표준 코드로 세션을 초기화해야 합니다.
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
%dataset을 사용하여 PySpark 3 전자 필기장으로 읽고 쓰는 중
Spark 2.4의 도입으로 PySpark 3(Spark 2.4) 전자 필기장에서 사용할 수 있도록 %dataset
사용자 지정 매직이 제공됩니다. IPython 커널에서 사용할 수 있는 매직 명령에 대한 자세한 내용은 IPython 매직 설명서를 참조하세요.
사용
%dataset {action} --datasetId {id} --dataFrame {df} --mode batch
설명
PySpark 전자 필기장(Python 3 커널)에서 데이터 집합을 읽거나 쓰는 사용자 지정 Data Science Workspace 매직 명령입니다.
{action}
--datasetId {id}
--dataFrame {df}
팬더 데이터 프레임입니다.
- 작업이 "읽기"이면 {df}은(는) 데이터 집합 읽기 작업의 결과를 사용할 수 있는 변수입니다(예: 데이터 프레임).
- 작업이 "쓰기"이면 이 데이터 프레임 {df}이(가) 데이터 집합에 기록됩니다.
--mode
작은 데이터 세트에서 쿼리 성능을 높이려면 "대화형" 모드를 사용하는 것이 좋습니다.
예
- 예제 읽기:
%dataset read --datasetId 5e68141134492718af974841 --dataFrame pd0 --mode batch
- 예제 작성:
%dataset write --datasetId 5e68141134492718af974842 --dataFrame pd0 --mode batch
df.cache()
을(를) 사용하여 데이터를 캐시하면 전자 필기장 성능이 크게 향상됩니다. 다음 오류가 발생하는 경우 도움이 될 수 있습니다.- 단계 오류로 인해 작업이 중단되었습니다. 각 파티션에 동일한 수의 요소가 있는 RDD만 압축할 수 있습니다.
- 원격 RPC 클라이언트 연결이 끊어지고 다른 메모리 오류가 발생했습니다.
- 데이터 세트를 읽고 쓸 때 성능이 저하됩니다.
다음 방법을 사용하여 JupyterLab 구매에서 위의 예를 자동으로 생성할 수 있습니다.
JupyterLab의 왼쪽 탐색에서 데이터 아이콘 탭(아래에 강조 표시됨)을 선택합니다. 데이터 세트 및 스키마 디렉터리가 나타납니다. 데이터 세트 를 선택하고 마우스 오른쪽 단추를 클릭한 다음 사용할 데이터 세트의 드롭다운 메뉴에서 전자 필기장에 데이터 쓰기 옵션을 선택합니다. 전자 필기장 하단에 실행 가능한 코드 항목이 나타납니다.
- Notebook에서 데이터 탐색 을 사용하여 읽기 셀을 생성합니다.
- 전자 필기장에 데이터 쓰기 를 사용하여 쓰기 셀을 생성합니다.
로컬 데이터 프레임 만들기
PySpark 3을 사용하여 로컬 데이터 프레임을 만들려면 SQL 쿼리를 사용합니다. 예:
date_aggregation.createOrReplaceTempView("temp_df")
df = spark.sql('''
SELECT *
FROM sparkdf
''')
local_df
df = spark.sql('''
SELECT *
FROM sparkdf
LIMIT limit
''')
sample_df = df.sample(fraction)
ExperienceEvent 데이터 필터링
PySpark 전자 필기장의 ExperienceEvent 데이터 세트에 액세스하고 필터링하려면 데이터 세트 ID({DATASET_ID}
), 조직의 IMS ID 및 특정 시간 범위를 정의하는 필터 규칙을 제공해야 합니다. spark.sql()
함수를 사용하여 필터링 시간 범위를 정의합니다. 여기서 함수 매개 변수는 SQL 쿼리 문자열입니다.
다음 셀은 2019년 1월 1일부터 2019년 12월 31일 말까지 독점적으로 존재하는 데이터로 ExperienceEvent 데이터 집합을 필터링합니다.
# PySpark 3 (Spark 2.4)
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
%dataset read --datasetId {DATASET_ID} --dataFrame df --mode batch
df.createOrReplaceTempView("event")
timepd = spark.sql("""
SELECT *
FROM event
WHERE timestamp > CAST('2019-01-01 00:00:00.0' AS TIMESTAMP)
AND timestamp < CAST('2019-12-31 23:59:59.9' AS TIMESTAMP)
""")
timepd.show()
노트북 크기 조절
아래 설명서에는 다음 개념에 대한 예제가 포함되어 있습니다.
SparkSession 초기화 중
모든 Scala Notebooks에서는 다음 상용구 코드로 세션을 초기화해야 합니다.
import org.apache.spark.sql.{ SparkSession }
val spark = SparkSession
.builder()
.master("local")
.getOrCreate()
데이터 세트 읽기
Scala에서 clientContext
을(를) 가져와서 Experience Platform 값을 가져와서 반환할 수 있으므로 var userToken
과(와) 같은 변수를 정의할 필요가 없습니다. 아래 Scala 예제에서 clientContext
은(는) 데이터 집합을 읽는 데 필요한 모든 필수 값을 가져오고 반환하는 데 사용됩니다.
df.cache()
을(를) 사용하여 데이터를 캐시하면 전자 필기장 성능이 크게 향상됩니다. 다음 오류가 발생하는 경우 도움이 될 수 있습니다.- 단계 오류로 인해 작업이 중단되었습니다. 각 파티션에 동일한 수의 요소가 있는 RDD만 압축할 수 있습니다.
- 원격 RPC 클라이언트 연결이 끊어지고 다른 메모리 오류가 발생했습니다.
- 데이터 세트를 읽고 쓸 때 성능이 저하됩니다.
import org.apache.spark.sql.{Dataset, SparkSession}
import com.adobe.platform.token.ClientContext
val spark = SparkSession.builder().master("local").config("spark.sql.warehouse.dir", "/").getOrCreate()
val clientContext = ClientContext.getClientContext()
val df1 = spark.read.format("com.adobe.platform.query")
.option("user-token", clientContext.getUserToken())
.option("ims-org", clientContext.getOrgId())
.option("api-key", clientContext.getApiKey())
.option("service-token", clientContext.getServiceToken())
.option("sandbox-name", clientContext.getSandboxName())
.option("mode", "batch")
.option("dataset-id", "5e68141134492718af974844")
.load()
df1.printSchema()
df1.show(10)
clientContext.getUserToken()
을(를) 사용하여 자동으로 가져오는 사용자 토큰입니다.clientContext.getServiceToken()
을(를) 사용하여 자동으로 가져오는 서비스 토큰입니다.clientContext.getOrgId()
을(를) 사용하여 자동으로 가져오는 조직 ID입니다.clientContext.getApiKey()
을(를) 사용하여 자동으로 가져오는 API 키입니다.다음 방법을 사용하여 JupyterLab 구매에서 위의 예를 자동으로 생성할 수 있습니다.
JupyterLab의 왼쪽 탐색에서 데이터 아이콘 탭(아래에 강조 표시됨)을 선택합니다. 데이터 세트 및 스키마 디렉터리가 나타납니다. 데이터 세트 를 선택하고 마우스 오른쪽 단추를 클릭한 다음 사용할 데이터 세트의 드롭다운 메뉴에서 Notebook에서 데이터 탐색 옵션을 선택합니다. 전자 필기장 하단에 실행 가능한 코드 항목이 나타납니다.
And
- Notebook에서 데이터 탐색 을 사용하여 읽기 셀을 생성합니다.
- 전자 필기장에 데이터 쓰기 를 사용하여 쓰기 셀을 생성합니다.
데이터 세트에 쓰기
Scala에서 clientContext
을(를) 가져와서 Experience Platform 값을 가져와서 반환할 수 있으므로 var userToken
과(와) 같은 변수를 정의할 필요가 없습니다. 아래 Scala 예제에서 clientContext
은(는) 데이터 집합에 쓰는 데 필요한 모든 필수 값을 정의하고 반환하는 데 사용됩니다.
df.cache()
을(를) 사용하여 데이터를 캐시하면 전자 필기장 성능이 크게 향상됩니다. 다음 오류가 발생하는 경우 도움이 될 수 있습니다.- 단계 오류로 인해 작업이 중단되었습니다. 각 파티션에 동일한 수의 요소가 있는 RDD만 압축할 수 있습니다.
- 원격 RPC 클라이언트 연결이 끊어지고 다른 메모리 오류가 발생했습니다.
- 데이터 세트를 읽고 쓸 때 성능이 저하됩니다.
import org.apache.spark.sql.{Dataset, SparkSession}
import com.adobe.platform.token.ClientContext
val spark = SparkSession.builder().master("local").config("spark.sql.warehouse.dir", "/").getOrCreate()
val clientContext = ClientContext.getClientContext()
df1.write.format("com.adobe.platform.query")
.option("user-token", clientContext.getUserToken())
.option("service-token", clientContext.getServiceToken())
.option("ims-org", clientContext.getOrgId())
.option("api-key", clientContext.getApiKey())
.option("sandbox-name", clientContext.getSandboxName())
.option("mode", "batch")
.option("dataset-id", "5e68141134492718af974844")
.save()
clientContext.getUserToken()
을(를) 사용하여 자동으로 가져오는 사용자 토큰입니다.clientContext.getServiceToken()
을(를) 사용하여 자동으로 가져오는 서비스 토큰입니다.clientContext.getOrgId()
을(를) 사용하여 자동으로 가져오는 조직 ID입니다.clientContext.getApiKey()
을(를) 사용하여 자동으로 가져오는 API 키입니다.로컬 데이터 프레임 만들기
Scala를 사용하여 로컬 데이터 프레임을 만들려면 SQL 쿼리가 필요합니다. 예:
sparkdf.createOrReplaceTempView("sparkdf")
val localdf = spark.sql("SELECT * FROM sparkdf LIMIT 1)
ExperienceEvent 데이터 필터링
Scala 전자 필기장에서 ExperienceEvent 데이터 집합에 액세스하고 필터링하려면 데이터 집합 ID({DATASET_ID}
), 조직의 IMS ID 및 특정 시간 범위를 정의하는 필터 규칙을 제공해야 합니다. spark.sql()
함수를 사용하여 필터링 시간 범위를 정의합니다. 여기서 함수 매개 변수는 SQL 쿼리 문자열입니다.
다음 셀은 2019년 1월 1일부터 2019년 12월 31일 말까지 독점적으로 존재하는 데이터로 ExperienceEvent 데이터 집합을 필터링합니다.
// Spark (Spark 2.4)
// Turn off extra logging
import org.apache.log4j.{Level, Logger}
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("com").setLevel(Level.OFF)
import org.apache.spark.sql.{Dataset, SparkSession}
val spark = org.apache.spark.sql.SparkSession.builder().appName("Notebook")
.master("local")
.getOrCreate()
// Stage Exploratory
val dataSetId: String = "{DATASET_ID}"
val orgId: String = sys.env("IMS_ORG_ID")
val clientId: String = sys.env("PYDASDK_IMS_CLIENT_ID")
val userToken: String = sys.env("PYDASDK_IMS_USER_TOKEN")
val serviceToken: String = sys.env("PYDASDK_IMS_SERVICE_TOKEN")
val mode: String = "batch"
var df = spark.read.format("com.adobe.platform.query")
.option("user-token", userToken)
.option("ims-org", orgId)
.option("api-key", clientId)
.option("mode", mode)
.option("dataset-id", dataSetId)
.option("service-token", serviceToken)
.load()
df.createOrReplaceTempView("event")
val timedf = spark.sql("""
SELECT *
FROM event
WHERE timestamp > CAST('2019-01-01 00:00:00.0' AS TIMESTAMP)
AND timestamp < CAST('2019-12-31 23:59:59.9' AS TIMESTAMP)
""")
timedf.show()
다음 단계
이 문서에서는 JupyterLab 노트북을 사용한 데이터 세트에 액세스하기 위한 일반적인 지침을 다룹니다. 데이터 세트 쿼리에 대한 자세한 예제는 JupyterLab 전자 필기장의 쿼리 서비스 설명서를 참조하십시오. 데이터 세트를 탐색하고 시각화하는 방법에 대한 자세한 내용은 전자 필기장을 사용하여 데이터 분석의 문서를 참조하십시오.
Query Service에 대한 선택적 SQL 플래그
이 표에서는 Query Service에 사용할 수 있는 선택적 SQL 플래그를 간략하게 설명합니다.
-h
, --help
-n
, --notify
-a
, --async
-d
, --display