Pipeline di funzioni IA/ML

Data Distiller consente ai data scientist e ai tecnici di arricchire le pipeline di apprendimento automatico con dati di esperienza del cliente di alto valore raccolti e curati in Adobe Experience Platform. Da un Python in qualsiasi ambiente, puoi esplorare in modo interattivo i dati dei clienti nell’Experience Platform, definire ed elaborare le funzioni in base ai dati e leggere le funzioni calcolate nell’ambiente di machine learning per la modellazione.

IMPORTANT
Questo flusso di lavoro richiede Data Distiller e una licenza Adobe Experience Platform Intelligence. Se non disponi di uno di questi prodotti, contatta il rappresentante del servizio Adobe.

Un’infografica che descrive la pipeline delle funzioni AI-ML.

  • Grazie alle potenti funzionalità di query di Data Distiller, puoi estrarre funzioni significative dai dati comportamentali avanzati disponibili nell’Experience Platform. Puoi quindi inserire i dati delle funzioni distillati nell’ambiente di apprendimento automatico senza dover copiare grandi volumi di dati evento al di fuori dell’Experience Platform.
  • Leggi il set di dati delle funzioni preparato negli strumenti di apprendimento automatico preferiti e combinali con altre funzioni derivate dai dati aziendali per addestrare, sperimentare, ottimizzare e distribuire modelli personalizzati personalizzati per la tua azienda.
  • Genera punteggi, previsioni o consigli dai modelli e restituisce l’output all’Experience Platform per ottimizzare le esperienze dei clienti tramite Real-time Customer Data Platform e Adobe Journey Optimizer.

Prerequisiti prerequisites

Questo flusso di lavoro richiede una buona conoscenza dei vari aspetti di Adobe Experience Platform. Prima di iniziare questo tutorial, consulta la documentazione per i seguenti concetti:

Passaggi successivi

Dopo aver letto questo documento, ti sono stati presentati i concetti importanti che si basano sull’utilizzo degli strumenti di machine learning preferiti per creare modelli personalizzati che supportano i casi di utilizzo di marketing.

I documenti inclusi in questa serie di guide descrivono i passaggi di base per la creazione di feature pipeline da un Experience Platform all’altro per alimentare modelli personalizzati nell’ambiente di apprendimento automatico. Ora puoi stabilire una connessione tra Data Distiller e il tuo Jupyter Notebook.

La documentazione collegata di seguito corrisponde ai passaggi indicati nell’infografica precedente.

Risorse aggiuntive

  • aepp: open source gestito da Adobe Python per effettuare richieste a Data Distiller e ad altri servizi di Experience Platform da Python codice.
recommendation-more-help
ccf2b369-4031-483f-af63-a93b5ae5e3fb