Endpoint "engines"
I motori sono alla base dei modelli di machine learning in Data Science Area di lavoro. Contengono algoritmi di apprendimento automatico che risolvono problemi specifici, pipeline di funzionalità per eseguire l'ingegneria delle funzionalità o entrambi.
Look il registro Docker
Le credenziali del Registro di sistema Docker sono necessarie per caricare un pacchetto di file di composizione, inclusi l’URL host Docker, il nome utente e la password. Per cercare queste informazioni, effettua la seguente richiesta GET:
Formato API
GET /engines/dockerRegistry
Richiesta
curl -X GET https://platform.adobe.io/data/sensei/engines/dockerRegistry \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Risposta
In caso di esito positivo, la risposta restituisce un payload contenente i dettagli del registro Docker, inclusi l'URL Docker (host
), il nome utente (username
) e la password (password
).
{ACCESS_TOKEN}
viene aggiornato.{
"host": "docker_host.azurecr.io",
"username": "00000000-0000-0000-0000-000000000000",
"password": "password"
}
Creare un motore utilizzando gli URL Docker docker-image
Per creare un motore, devi eseguire una richiesta POST fornendo i relativi metadati e un URL Docker che faccia riferimento a un’immagine Docker in moduli multipart.
Formato API
POST /engines
Richiedi Python/R
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: multipart/form-data' \
-F 'engine={
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"location": "v1rsvj32smc4wbs.azurecr.io/ml-featurepipeline-pyspark:1.0",
"name": "An additional name for the Docker image",
"executionType": "Python"
}
}
}
}'
name
description
type
algorithm
artifacts.default.image.location
artifacts.default.image.executionType
Richiedi PySpark/Scala
Quando si effettua una richiesta per le ricette PySpark, executionType
e type
sono "PySpark". Quando si effettua una richiesta per le ricette Scala, executionType
e type
sono "Spark". L’esempio di ricetta Scala che segue utilizza Spark:
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: multipart/form-data' \
-F 'engine={
"name": "Spark retail sales recipe",
"description": "A description for this Engine",
"type": "Spark",
"mlLibrary":"databricks-spark",
"artifacts": {
"default": {
"image": {
"name": "modelspark",
"executionType": "Spark",
"packagingType": "docker",
"location": "v1d2cs4mimnlttw.azurecr.io/sarunbatchtest:0.0.1"
}
}
}
}'
name
description
type
mlLibrary
databricks-spark
.artifacts.default.image.location
artifacts.default.image.executionType
Risposta
In caso di esito positivo, la risposta restituisce un payload contenente i dettagli del motore appena creato, incluso il relativo identificatore univoco (id
). L’esempio di risposta che segue è per un motore Python. Tutte le risposte del motore seguono questo formato:
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"location": "v1rsvj32smc4wbs.azurecr.io/ml-featurepipeline-pyspark:1.0",
"name": "An additional name for the Docker image",
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Creare un motore di pipeline delle funzioni utilizzando gli URL Docker feature-pipeline-docker
Per creare un motore di pipeline di funzioni, devi eseguire una richiesta POST mentre fornisci i relativi metadati e un URL Docker che fa riferimento a un’immagine Docker.
Formato API
POST /engines
Richiesta
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer ' \
-H 'x-gw-ims-org-id: 20655D0F5B9875B20A495E23@AdobeOrg' \
-H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=engine.v1.json' \
-H 'x-api-key: acp_foundation_machineLearning' \
-H 'Content-Type: text/plain' \
-F '{
"type": "PySpark",
"algorithm":"fp",
"name": "Feature_Pipeline_Engine",
"description": "Feature_Pipeline_Engine",
"mlLibrary": "databricks-spark",
"artifacts": {
"default": {
"image": {
"location": "v7d1cs2mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "datatransformation",
"executionType": "PySpark",
"packagingType": "docker"
},
"defaultMLInstanceConfigs": [ ...
]
}
}
}'
type
algorithm
fp
(pipeline delle funzionalità).name
description
mlLibrary
databricks-spark
.artifacts.default.image.location
artifacts.default.image.executionType
artifacts.default.image.packagingType
docker
.artifacts.default.defaultMLInstanceConfigs
pipeline.json
.Risposta
In caso di esito positivo, la risposta restituisce un payload contenente i dettagli del motore di pipeline delle funzionalità appena creato, incluso il relativo identificatore univoco (id
). La risposta di esempio seguente è per un motore di pipeline di funzioni PySpark.
{
"id": "88236891-4309-4fd9-acd0-3de7827cecd1",
"name": "Feature_Pipeline_Engine",
"description": "Feature_Pipeline_Engine",
"type": "PySpark",
"algorithm": "fp",
"mlLibrary": "databricks-spark",
"created": "2020-04-24T20:46:58.382Z",
"updated": "2020-04-24T20:46:58.382Z",
"deprecated": false,
"artifacts": {
"default": {
"image": {
"location": "v7d1cs3mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "datatransformation",
"executionType": "PySpark",
"packagingType": "docker"
},
"defaultMLInstanceConfigs": [ ... ]
}
}
}
Recuperare un elenco di motori
È possibile recuperare un elenco di motori eseguendo una singola richiesta di GET. Per filtrare i risultati, puoi specificare i parametri di query nel percorso della richiesta. Per un elenco delle query disponibili, consulta la sezione dell'appendice sui parametri di query per il recupero delle risorse.
Formato API
GET /engines
GET /engines?parameter_1=value_1
GET /engines?parameter_1=value_1¶meter_2=value_2
Richiesta
curl -X GET \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Risposta
In caso di esito positivo, la risposta restituisce un elenco di motori e dei relativi dettagli.
{
"children": [
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde31",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "PySpark",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
},
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
},
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde33",
"name": "Feature Pipeline Engine",
"description": "A feature pipeline Engine",
"type": "PySpark",
"algorithm":"fp",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
],
"_page": {
"property": "deleted==false",
"totalCount": 100,
"count": 3
}
}
Recuperare un motore specifico retrieve-specific
Per recuperare i dettagli di un motore specifico, esegui una richiesta di GET che includa l’ID del motore desiderato nel percorso della richiesta.
Formato API
GET /engines/{ENGINE_ID}
{ENGINE_ID}
Richiesta
curl -X GET \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Risposta
In caso di esito positivo, la risposta restituisce un payload contenente i dettagli del motore desiderato.
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "PySpark",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"location": "v7d1cs2mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "file.egg",
"executionType": "PySpark",
"packagingType": "docker"
}
}
}
}
Aggiornare un motore
Puoi modificare e aggiornare un motore esistente sovrascrivendo le relative proprietà tramite una richiesta PUT che include l’ID del motore di destinazione nel percorso della richiesta e fornendo un payload JSON contenente le proprietà aggiornate.
La seguente chiamata API di esempio aggiornerà il nome e la descrizione di un motore mentre inizialmente disponi di queste proprietà:
{
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Formato API
PUT /engines/{ENGINE_ID}
{ENGINE_ID}
Richiesta
curl -X PUT \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=engine.v1.json' \
-d '{
"name": "An updated name for this Engine",
"description": "An updated description",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}'
Risposta
In caso di esito positivo, la risposta restituisce un payload contenente i dettagli aggiornati del motore.
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "An updated name for this Engine",
"description": "An updated description",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-02T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Eliminare un motore
Puoi eliminare un motore eseguendo una richiesta DELETE mentre specifichi l’ID del motore di destinazione nel percorso della richiesta. L’eliminazione di un motore comporta l’eliminazione a catena di tutte le istanze MLI che fanno riferimento a tale motore, incluse le esecuzioni di esperimenti ed esperimenti appartenenti a tali istanze MLI.
Formato API
DELETE /engines/{ENGINE_ID}
{ENGINE_ID}
Richiesta
curl -X DELETE \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Risposta
{
"title": "Success",
"status": 200,
"detail": "Engine deletion was successful"
}