Blueprint per data science personalizzata per l’arricchimento dei profili

Il blueprint di data science personalizzato per l’arricchimento dei profili illustra come utilizzare i dati per addestrare, distribuire e valutare modelli per fornire informazioni di apprendimento automatico in Experience Platform e Real-Time Customer Data Platform dalla data science e dagli strumenti di apprendimento automatico.

Le informazioni modellate possono essere acquisite in Experience Platform per arricchire il profilo cliente in tempo reale. Esempi di informazioni basate sull’apprendimento automatico includono valutazione del ciclo di vita, affinità per prodotto e categoria, propensione alla conversione o all’abbandono.

Casi di utilizzo

  • Estrarre informazioni approfondite e individuare eventuali pattern dai dati dei clienti, quindi addestrare e valutare i modelli utilizzando questi dati.
  • Arricchire il profilo cliente in tempo reale con elementi di conoscenza e attributi basati su modelli, per una personalizzazione più granulare e una migliore ottimizzazione del percorso
  • Addestrare e valutare i modelli per determinare informazioni sui clienti, come valore del ciclo di vita del cliente, propensione alla conversione o all’abbandono, affinità per prodotti e contenuti e valutazione del coinvolgimento

Architettura

Architettura di riferimento per il blueprint per la personalizzazione Data Science per l’arricchimento del profilo

Guardrail

  • Per protezioni dettagliate e latenze end-to-end durante l’acquisizione dei risultati della data science in Experience Platform e Real-time Customer Profile fanno riferimento ai guardrail di acquisizione dei dati e al diagramma di latenza a cui si fa riferimento nel documento guardrail di distribuzione.

Fasi di implementazione

  1. Creare schemi per i dati da acquisire.
  2. Creare set di dati per i dati da acquisire.
  3. Acquisire dati in Experience Platform.

Per i risultati del modello da acquisire nel profilo cliente in tempo reale, assicurati di effettuare le seguenti operazioni prima di acquisire i dati:

  1. Configurare correttamente le identità e i relativi spazi dei nomi nello schema, affinché i dati acquisiti possano essere uniti in un profilo unificato.
  2. Attivare lo schema e i set di dati per il profilo.

Considerazioni sull’implementazione

  • Nella maggior parte dei casi i risultati del modello devono essere acquisiti come attributi di profilo, e non come eventi di esperienza. I risultati del modello possono essere semplici stringhe di attributi. Se devi acquisire più risultati del modello, è preferibile utilizzare un campo di tipo mappa o array.

  • Il set di dati dello snapshot di profilo giornaliero (esportazione giornaliera dei dati degli attributi del profilo unificato) può essere utilizzato per addestrare i modelli sui dati degli attributi di profilo. La documentazione sui set di dati dello snapshot del profilo è disponibile qui.

  • Per estrarre i dati da Experience Platform è possibile utilizzare i seguenti metodi

    • Data Access SDK

      • I dati sono in formato non elaborato.
      • I dati di eventi esperienza di profilo restano nello stato non elaborato e non unificato.
    • Destinazioni RTCDP

      • I dati in uscita possono includere solo attributi di profilo e appartenenze ai segmenti.

Documentazione correlata

Articoli di blog correlati

recommendation-more-help
045b7d44-713c-4708-a7a6-5dea7cc2546b