Importation d’une recette empaquetée dans l’interface utilisateur de Data Science Workspace
Ce tutoriel explique comment configurer et importer une recette empaquetée à l’aide de l’exemple de ventes au détail fourni. D’ici la fin de ce tutoriel, vous serez prêt à créer, former et évaluer un modèle dans Adobe Experience Platform Data Science Workspace.
Conditions préalables
Ce tutoriel nécessite une recette empaquetée sous la forme d’une URL d’image Docker. Pour plus d’informations, consultez le tutoriel expliquant comment Former une recette empaquetée à partir de fichiers sources.
Workflow de l’interface utilisateur
L’importation d’une recette empaquetée dans Data Science Workspace nécessite des configurations de recette spécifiques, compilées dans un seul fichier JSON (JavaScript Object Notation). Cette compilation des configurations de recette est appelée fichier de configuration. Une recette empaquetée avec un ensemble particulier de configurations est appelée instance de recette. Une recette peut être utilisée pour créer de nombreuses instances de recette dans Data Science Workspace.
Voici les différentes étapes du workflow d’importation d’une recette empaquetée :
Configurer une recette configure
Chaque instance de recette de Data Science Workspace est accompagnée d’un ensemble de configurations qui adaptent l’instance de recette à un cas d’utilisation particulier. Les fichiers de configuration définissent les comportements de formation et de notation par défaut d’un modèle créé à l’aide de cette instance de recette.
Vous trouverez ci-dessous un échantillon de fichier de configuration présentant les comportements de formation et de notation par défaut de la recette Ventes au détail.
[
{
"name": "train",
"parameters": [
{
"key": "learning_rate",
"value": "0.1"
},
{
"key": "n_estimators",
"value": "100"
},
{
"key": "max_depth",
"value": "3"
},
{
"key": "ACP_DSW_INPUT_FEATURES",
"value": "date,store,storeType,storeSize,temperature,regionalFuelPrice,markdown,cpi,unemployment,isHoliday"
},
{
"key": "ACP_DSW_TARGET_FEATURES",
"value": "weeklySales"
},
{
"key": "ACP_DSW_FEATURE_UPDATE_SUPPORT",
"value": false
},
{
"key": "tenantId",
"value": "_{TENANT_ID}"
},
{
"key": "ACP_DSW_TRAINING_XDM_SCHEMA",
"value": "{SEE BELOW FOR DETAILS}"
},
{
"key": "evaluation.labelColumn",
"value": "weeklySalesAhead"
},
{
"key": "evaluation.metrics",
"value": "MAPE,MAE,RMSE,MASE"
}
]
},
{
"name": "score",
"parameters": [
{
"key": "tenantId",
"value": "_{TENANT_ID}"
},
{
"key":"ACP_DSW_SCORING_RESULTS_XDM_SCHEMA",
"value":"{SEE BELOW FOR DETAILS}"
}
]
}
]
learning_rate
n_estimators
max_depth
ACP_DSW_INPUT_FEATURES
ACP_DSW_TARGET_FEATURES
ACP_DSW_FEATURE_UPDATE_SUPPORT
tenantId
ACP_DSW_TRAINING_XDM_SCHEMA
evaluation.labelColumn
evaluation.metrics
ACP_DSW_SCORING_RESULTS_XDM_SCHEMA
Pour les besoins de ce tutoriel, vous pouvez laisser les fichiers de configuration par défaut de la recette Ventes au détail dans la référence Data Science Workspace telle qu’ils sont.
Importation d’une recette Docker - Python python
Commencez par naviguer et sélectionner Workflows dans le coin supérieur gauche de l’interface utilisateur de Platform. Sélectionnez ensuite Importer la recette et sélectionnez Launch.
La page Configurer pour le workflow Importer la recette s’affiche. Saisissez un nom et une description pour la recette, puis sélectionnez Suivant dans le coin supérieur droit.
Une fois que vous êtes sur la page Sélectionner la source, collez l’URL Docker correspondant à la recette empaquetée créée à l’aide des fichiers source Python dans le champ URL Source . Importez ensuite le fichier de configuration fourni en le faisant glisser et en le déposant, ou utilisez le Navigateur du système de fichiers. Le fichier de configuration fourni se trouve ici : experience-platform-dsw-reference/recipes/python/retail/retail.config.json
. Sélectionnez Python dans la liste déroulante Runtime et Classification dans la liste déroulante Type. Une fois que tout a été rempli, sélectionnez Suivant dans le coin supérieur droit pour accéder à Gérer les schémas.
Ensuite, sélectionnez les schémas d’entrée et de sortie de Ventes au détail dans la section Gérer les schémas. Ils ont été créés à l’aide du script d’amorçage fourni dans le tutoriel Création du schéma et du jeu de données de ventes au détail .
Dans la section Gestion des fonctionnalités, sélectionnez votre identification client dans la visionneuse de schémas pour développer le schéma d’entrée Ventes au détail. Sélectionnez les fonctionnalités d’entrée et de sortie en mettant en surbrillance la fonctionnalité souhaitée, puis sélectionnez Fonctionnalité d’entrée ou Fonctionnalité cible dans la fenêtre Propriétés du champ à droite. Pour les besoins de ce tutoriel, définissez weeklySales en tant que Fonctionnalité cible et tout le reste en tant que Fonctionnalité d’entrée. Sélectionnez Suivant pour passer en revue votre nouvelle recette configurée.
Vérifiez la recette, ajoutez, modifiez ou supprimez des configurations si nécessaire. Sélectionnez Terminer pour créer la recette.
Passez aux étapes suivantes pour découvrir comment créer un modèle dans Data Science Workspace à l’aide de la nouvelle recette Ventes au détail.
Importation d’une recette Docker - R r
Commencez par naviguer et sélectionner Workflows dans le coin supérieur gauche de l’interface utilisateur de Platform. Sélectionnez ensuite Importer la recette et sélectionnez Launch.
La page Configurer pour le workflow Importer la recette s’affiche. Saisissez un nom et une description pour la recette, puis sélectionnez Suivant dans le coin supérieur droit.
Une fois que vous êtes sur la page Select source, collez l’URL Docker correspondant à la recette empaquetée créée à l’aide de fichiers source R dans le champ Source URL. Importez ensuite le fichier de configuration fourni en le faisant glisser et en le déposant, ou utilisez le Navigateur du système de fichiers. Le fichier de configuration fourni se trouve ici : experience-platform-dsw-reference/recipes/R/Retail\ -\ GradientBoosting/retail.config.json
. Sélectionnez R dans la liste déroulante Runtime et Classification dans la liste déroulante Type. Une fois que tout a été rempli, sélectionnez Suivant dans le coin supérieur droit pour accéder à Gérer les schémas.
Ensuite, sélectionnez les schémas d’entrée et de sortie de Ventes au détail dans la section Gérer les schémas. Ils ont été créés à l’aide du script d’amorçage fourni dans le tutoriel Création du schéma et du jeu de données de ventes au détail .
Dans la section Gestion des fonctionnalités, sélectionnez votre identification client dans la visionneuse de schémas pour développer le schéma d’entrée Ventes au détail. Sélectionnez les fonctionnalités d’entrée et de sortie en mettant en surbrillance la fonctionnalité souhaitée, puis sélectionnez Fonctionnalité d’entrée ou Fonctionnalité cible dans la fenêtre Propriétés du champ à droite. Pour les besoins de ce tutoriel, définissez weeklySales en tant que Fonctionnalité cible et tout le reste en tant que Fonctionnalité d’entrée. Sélectionnez Suivant pour passer en revue votre nouvelle recette configurée.
Vérifiez la recette, ajoutez, modifiez ou supprimez des configurations si nécessaire. Sélectionnez Terminer pour créer la recette.
Passez aux étapes suivantes pour découvrir comment créer un modèle dans Data Science Workspace à l’aide de la nouvelle recette Ventes au détail.
Importation d’une recette Docker - PySpark pyspark
Commencez par naviguer et sélectionner Workflows dans le coin supérieur gauche de l’interface utilisateur de Platform. Sélectionnez ensuite Importer la recette et sélectionnez Launch.
La page Configurer pour le workflow Importer la recette s’affiche. Saisissez un nom et une description pour la recette, puis sélectionnez Suivant dans le coin supérieur droit pour continuer.
Une fois que vous êtes sur la page Sélectionner la source, collez l’URL Docker correspondant à la recette empaquetée créée à l’aide des fichiers source PySpark dans le champ URL Source. Importez ensuite le fichier de configuration fourni en le faisant glisser et en le déposant, ou utilisez le Navigateur du système de fichiers. Le fichier de configuration fourni se trouve ici : experience-platform-dsw-reference/recipes/pyspark/retail/pipeline.json
. Sélectionnez PySpark dans la liste déroulante Runtime. Une fois l’exécution PySpark sélectionnée, l’artefact par défaut est automatiquement renseigné sur Docker. Sélectionnez ensuite Classification dans la liste déroulante Type . Une fois que tout a été rempli, sélectionnez Suivant dans le coin supérieur droit pour accéder à Gérer les schémas.
Ensuite, sélectionnez les schémas d’entrée et de sortie de Ventes au détail à l’aide du sélecteur Gérer les schémas. Les schémas ont été créés à l’aide du script de bootstrap fourni dans le tutoriel Création du schéma et du jeu de données de ventes au détail .
Dans la section Gestion des fonctionnalités, sélectionnez votre identification client dans la visionneuse de schémas pour développer le schéma d’entrée Ventes au détail. Sélectionnez les fonctionnalités d’entrée et de sortie en mettant en surbrillance la fonctionnalité souhaitée, puis sélectionnez Fonctionnalité d’entrée ou Fonctionnalité cible dans la fenêtre Propriétés du champ à droite. Pour les besoins de ce tutoriel, définissez weeklySales en tant que Fonctionnalité cible et tout le reste en tant que Fonctionnalité d’entrée. Sélectionnez Suivant pour passer en revue votre nouvelle recette configurée.
Vérifiez la recette, ajoutez, modifiez ou supprimez des configurations si nécessaire. Sélectionnez Terminer pour créer la recette.
Passez aux étapes suivantes pour découvrir comment créer un modèle dans Data Science Workspace à l’aide de la nouvelle recette Ventes au détail.
Importation d’une recette Docker - Scala scala
Commencez par naviguer et sélectionner Workflows dans le coin supérieur gauche de l’interface utilisateur de Platform. Sélectionnez ensuite Importer la recette et sélectionnez Launch.
La page Configurer pour le workflow Importer la recette s’affiche. Saisissez un nom et une description pour la recette, puis sélectionnez Suivant dans le coin supérieur droit pour continuer.
Une fois que vous êtes sur la page Sélectionner la source, collez l’URL Docker correspondant à la recette empaquetée créée à l’aide des fichiers source Scala dans le champ URL Source. Importez ensuite le fichier de configuration fourni en le faisant glisser et en le déposant, ou utilisez le Navigateur du système de fichiers. Le fichier de configuration fourni se trouve ici : experience-platform-dsw-reference/recipes/scala/retail/pipelineservice.json
. Sélectionnez Spark dans la liste déroulante Runtime. Une fois l’exécution Spark sélectionnée, l’artefact par défaut est automatiquement renseigné sur Docker. Sélectionnez ensuite Régression dans la liste déroulante Type . Une fois que tout a été rempli, sélectionnez Suivant dans le coin supérieur droit pour accéder à Gérer les schémas.
Ensuite, sélectionnez les schémas d’entrée et de sortie de Ventes au détail à l’aide du sélecteur Gérer les schémas. Les schémas ont été créés à l’aide du script de bootstrap fourni dans le tutoriel Création du schéma et du jeu de données de ventes au détail .
Dans la section Gestion des fonctionnalités, sélectionnez votre identification client dans la visionneuse de schémas pour développer le schéma d’entrée Ventes au détail. Sélectionnez les fonctionnalités d’entrée et de sortie en mettant en surbrillance la fonctionnalité souhaitée, puis sélectionnez Fonctionnalité d’entrée ou Fonctionnalité cible dans la fenêtre Propriétés du champ à droite. Pour les besoins de ce tutoriel, définissez "weeklySales" en tant que Fonctionnalité Target et tout le reste en tant que Fonctionnalité d’entrée. Sélectionnez Suivant pour passer en revue votre nouvelle recette configurée.
Vérifiez la recette, ajoutez, modifiez ou supprimez des configurations si nécessaire. Sélectionnez Terminer pour créer la recette.
Passez aux étapes suivantes pour découvrir comment créer un modèle dans Data Science Workspace à l’aide de la nouvelle recette Ventes au détail.
Étapes suivantes next-steps
Ce tutoriel a fourni des informations sur la configuration et l’importation d’une recette dans Data Science Workspace. Vous pouvez désormais créer, former et évaluer un modèle à l’aide de la nouvelle recette créée.