Point de terminaison des moteurs
Les moteurs sont le fondement des modèles de machine learning dans l’espace de travail de science des données. Ils contiennent des algorithmes de machine learning qui permettent de résoudre des problèmes spécifiques, des pipelines de fonctionnalités permettant de concevoir des fonctionnalités, ou les deux.
Recherche de votre registre Docker
Les informations d’identification de votre registre Docker sont nécessaires pour charger un fichier de recette empaqueté, y compris l’URL de votre hôte Docker, votre nom d’utilisateur et votre mot de passe. Vous pouvez rechercher ces informations en exécutant la requête GET suivante :
Format d’API
GET /engines/dockerRegistry
Requête
curl -X GET https://platform.adobe.io/data/sensei/engines/dockerRegistry \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Réponse
Une réponse réussie renvoie un payload contenant les détails de votre registre Docker, y compris l’URL Docker (host
), le nom d’utilisateur (username
), et le mot de passe (password
).
{ACCESS_TOKEN}
est mis à jour.{
"host": "docker_host.azurecr.io",
"username": "00000000-0000-0000-0000-000000000000",
"password": "password"
}
Création d’un moteur à l’aide des URL Docker docker-image
Vous pouvez créer un moteur en exécutant une requête POST tout en fournissant ses métadonnées et une URL Docker qui référence une image Docker dans des formulaires en plusieurs parties.
Format d’API
POST /engines
Demander Python/R
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: multipart/form-data' \
-F 'engine={
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"location": "v1rsvj32smc4wbs.azurecr.io/ml-featurepipeline-pyspark:1.0",
"name": "An additional name for the Docker image",
"executionType": "Python"
}
}
}
}'
name
description
type
algorithm
artifacts.default.image.location
artifacts.default.image.executionType
Demander PySpark/Scala
Lors de l’exécution d’une requête pour les recettes PySpark, les executionType
et type
sont "PySpark". Lors de l’exécution d’une requête pour les recettes Scala, les executionType
et type
sont "Spark". L’exemple de recette Scala suivant utilise Spark :
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: multipart/form-data' \
-F 'engine={
"name": "Spark retail sales recipe",
"description": "A description for this Engine",
"type": "Spark",
"mlLibrary":"databricks-spark",
"artifacts": {
"default": {
"image": {
"name": "modelspark",
"executionType": "Spark",
"packagingType": "docker",
"location": "v1d2cs4mimnlttw.azurecr.io/sarunbatchtest:0.0.1"
}
}
}
}'
name
description
type
mlLibrary
databricks-spark
.artifacts.default.image.location
artifacts.default.image.executionType
Réponse
Une réponse réussie renvoie un payload contenant les détails du nouveau moteur, y compris son identifiant unique (id
). L’exemple de réponse suivant est pour un moteur Python. Toutes les réponses du moteur suivent ce format :
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"location": "v1rsvj32smc4wbs.azurecr.io/ml-featurepipeline-pyspark:1.0",
"name": "An additional name for the Docker image",
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Création d’un moteur de pipeline de fonctionnalités à l’aide des URL Docker feature-pipeline-docker
Vous pouvez créer un moteur de pipeline de fonctionnalités en exécutant une requête de POST tout en fournissant ses métadonnées et une URL Docker qui référence une image Docker.
Format d’API
POST /engines
Requête
curl -X POST \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer ' \
-H 'x-gw-ims-org-id: 20655D0F5B9875B20A495E23@AdobeOrg' \
-H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=engine.v1.json' \
-H 'x-api-key: acp_foundation_machineLearning' \
-H 'Content-Type: text/plain' \
-F '{
"type": "PySpark",
"algorithm":"fp",
"name": "Feature_Pipeline_Engine",
"description": "Feature_Pipeline_Engine",
"mlLibrary": "databricks-spark",
"artifacts": {
"default": {
"image": {
"location": "v7d1cs2mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "datatransformation",
"executionType": "PySpark",
"packagingType": "docker"
},
"defaultMLInstanceConfigs": [ ...
]
}
}
}'
type
algorithm
fp
(pipeline de fonctionnalités).name
description
mlLibrary
databricks-spark
.artifacts.default.image.location
artifacts.default.image.executionType
artifacts.default.image.packagingType
docker
.artifacts.default.defaultMLInstanceConfigs
pipeline.json
.Réponse
Une réponse réussie renvoie un payload contenant les détails du nouveau moteur de pipeline de fonctionnalités, y compris son identifiant unique (id
). L’exemple de réponse suivant concerne un moteur de pipeline de fonctionnalités PySpark.
{
"id": "88236891-4309-4fd9-acd0-3de7827cecd1",
"name": "Feature_Pipeline_Engine",
"description": "Feature_Pipeline_Engine",
"type": "PySpark",
"algorithm": "fp",
"mlLibrary": "databricks-spark",
"created": "2020-04-24T20:46:58.382Z",
"updated": "2020-04-24T20:46:58.382Z",
"deprecated": false,
"artifacts": {
"default": {
"image": {
"location": "v7d1cs3mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "datatransformation",
"executionType": "PySpark",
"packagingType": "docker"
},
"defaultMLInstanceConfigs": [ ... ]
}
}
}
Récupération d’une liste de moteurs
Vous pouvez récupérer une liste de moteurs en exécutant une seule requête GET. Pour vous aider à filtrer les résultats, vous pouvez spécifier des paramètres de requête dans le chemin de requête. Pour obtenir une liste des requêtes disponibles, reportez-vous à la section de l’annexe concernant les paramètres de requête pour la récupération des ressources.
Format d’API
GET /engines
GET /engines?parameter_1=value_1
GET /engines?parameter_1=value_1¶meter_2=value_2
Requête
curl -X GET \
https://platform.adobe.io/data/sensei/engines \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Réponse
Une réponse réussie renvoie une liste de moteurs et leurs détails.
{
"children": [
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde31",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "PySpark",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
},
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
},
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde33",
"name": "Feature Pipeline Engine",
"description": "A feature pipeline Engine",
"type": "PySpark",
"algorithm":"fp",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z"
}
],
"_page": {
"property": "deleted==false",
"totalCount": 100,
"count": 3
}
}
Récupération d’un moteur spécifique retrieve-specific
Vous pouvez récupérer les détails d’un moteur spécifique en exécutant une requête GET qui inclut l’identifiant du moteur de votre choix dans le chemin d’accès à la requête.
Format d’API
GET /engines/{ENGINE_ID}
{ENGINE_ID}
Requête
curl -X GET \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Réponse
Une réponse réussie renvoie un payload contenant les détails du moteur concerné.
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "PySpark",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-01T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"location": "v7d1cs2mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
"name": "file.egg",
"executionType": "PySpark",
"packagingType": "docker"
}
}
}
}
Mise à jour d’un moteur
Vous pouvez modifier et mettre à jour un moteur existant en écrasant ses propriétés par le biais d’une requête PUT qui inclut l’identifiant du moteur cible dans le chemin d’accès à la requête et en fournissant un payload JSON contenant des propriétés mises à jour.
L’exemple d’appel API suivant met à jour le nom et la description d’un moteur lorsque les propriétés initiales sont les suivantes :
{
"name": "A name for this Engine",
"description": "A description for this Engine",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Format d’API
PUT /engines/{ENGINE_ID}
{ENGINE_ID}
Requête
curl -X PUT \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}' \
-H 'content-type: application/vnd.adobe.platform.sensei+json;profile=engine.v1.json' \
-d '{
"name": "An updated name for this Engine",
"description": "An updated description",
"type": "Python",
"algorithm": "Classification",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}'
Réponse
Une réponse réussie renvoie un payload contenant les détails mis à jour du moteur.
{
"id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
"name": "An updated name for this Engine",
"description": "An updated description",
"type": "Python",
"algorithm": "Classification",
"created": "2019-01-01T00:00:00.000Z",
"createdBy": {
"displayName": "Jane Doe",
"userId": "Jane_Doe@AdobeID"
},
"updated": "2019-01-02T00:00:00.000Z",
"artifacts": {
"default": {
"image": {
"executionType": "Python",
"packagingType": "docker"
}
}
}
}
Suppression d’un moteur
Vous pouvez supprimer un moteur en exécutant une requête DELETE tout en spécifiant l’identifiant du moteur cible dans le chemin d’accès à la requête. La suppression d’un moteur entraînera la suppression en cascade de toutes les MLInstances qui font référence à ce moteur, y compris toutes les expériences et les exécutions d’expériences appartenant à ces MLInstances.
Format d’API
DELETE /engines/{ENGINE_ID}
{ENGINE_ID}
Requête
curl -X DELETE \
https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Réponse
{
"title": "Success",
"status": 200,
"detail": "Engine deletion was successful"
}