Canalizaciones de funciones AI/ML

Data Distiller permite a los científicos e ingenieros de datos enriquecer sus canalizaciones de aprendizaje automático con datos de experiencia del cliente de alto valor que se han recopilado y depurado en Adobe Experience Platform. Desde una Python portátil en cualquier entorno, puede explorar de forma interactiva los datos de los clientes en el Experience Platform, definir y calcular las funciones a partir de los datos, y leer las funciones calculadas en su entorno de aprendizaje automático para el modelado.

IMPORTANT
Este flujo de trabajo requiere Data Distiller y una licencia de Adobe Experience Platform Intelligence. Si no dispone de ninguno de estos productos, póngase en contacto con su representante de servicios de Adobe.

Una infografía que detalla la canalización de funciones AI-ML.

  • Con las potentes funciones de consulta de Data Distiller, puede extraer funciones significativas de los abundantes datos de comportamiento disponibles en el Experience Platform. A continuación, puede incorporar los datos de funciones destiladas al entorno de aprendizaje automático sin necesidad de copiar grandes volúmenes de datos de evento fuera del Experience Platform.
  • Lea el conjunto de datos de funciones preparado en sus herramientas de aprendizaje automático preferidas y combínelo con otras funciones derivadas de los datos empresariales para entrenar, experimentar, ajustar e implementar modelos personalizados adaptados a su negocio.
  • Genere puntuaciones, predicciones o recomendaciones a partir de los modelos y devuelva el resultado al Experience Platform para optimizar las experiencias de los clientes mediante Real-time Customer Data Platform y Adobe Journey Optimizer.

Requisitos previos prerequisites

Este flujo de trabajo requiere una comprensión práctica de los distintos aspectos de Adobe Experience Platform. Antes de comenzar este tutorial, revise la documentación para los siguientes conceptos:

Pasos siguientes

Al leer este documento, se le han introducido los conceptos importantes subyacentes al uso de las herramientas de aprendizaje automático que prefiere para crear modelos personalizados que sean compatibles con los casos prácticos de marketing.

En los documentos incluidos en esta serie de guías se describen los pasos básicos para crear canalizaciones de funciones desde Experience Platform para alimentar modelos personalizados en su entorno de aprendizaje automático. Ya está listo para establecer una conexión entre Data Distiller y su Jupyter Notebook.

La documentación enlazada a continuación corresponde a los pasos indicados en la infografía anterior.

Recursos adicionales

  • aepp: un código abierto administrado por Adobe Python para realizar solicitudes a Data Distiller y otros servicios de Experience Platform desde Python código.
recommendation-more-help
ccf2b369-4031-483f-af63-a93b5ae5e3fb