[Solo PaaS]{class="badge informative" title="Se aplica solo a proyectos de Adobe Commerce en la nube (infraestructura PaaS administrada por Adobe) y a proyectos locales."}

Informes del servicio de asistencia para Zendesk

NOTE
Esto solo está disponible para los clientes que se encuentran en el plan Pro y que utilizan la nueva arquitectura. Se encuentra en la nueva arquitectura si tiene disponible la sección Data Warehouse Views después de seleccionar Manage Data en la barra de herramientas principal.

Consolidar los datos de Zendesk con su base de datos transaccional es una excelente manera de comprender mejor cómo interactúan sus clientes con sus equipos de éxito de ventas o clientes. También le ayuda a saber qué tipo de clientes utilizan su plataforma de asistencia. En este tema se muestra cómo configurar un tablero para obtener informes granulares sobre el rendimiento de Zendesk y el tiempo en sus clientes transaccionales.

Antes de comenzar, desea conectar su Zendesk. Este análisis contiene columnas calculadas avanzadas.

Primeros pasos

Columnas que rastrear

  • audits tabla

  • _id

  • created_at

  • id

  • ticket_id

  • _updated_at

  • audits_~_events tabla

  • _sub_id

  • _id_of_parent

  • author_id

  • field_name

  • public

  • type

  • value

  • tickets tabla

  • _id

  • assignee_id

  • created_at

  • id

  • requester_id

  • status

  • updated_at

  • via_~_source_~_from_~_address

  • _updated_at

  • users tabla

  • _id

  • created_at

  • emails

  • id

  • role

  • updated_at

  • _updated_at

Conjuntos de filtros para crear

  • Zendesk Tickets tabla

    • status != deleted
  • Filter set name: Tickets we count

  • Filter set logic:

Columnas calculadas

Columnas para crear

  • Zendesk user's tabla

    • User is agent? (Yes/No)

      • Column type - Same Table > Calculation

      • Input columns - role, email

      • SQL Calculation - case when Ais notnuloandA!=end-user entonces Yes cuando B no es null y B como %@magento.com entonces Yes más No finalizan

      • Reemplazar @magento.com por su dominio

      • Datatype - String

  • Zendesk audits_~_events tabla

    • Seleccione una definición: Joined Column

    • Create Path:

    • Many: Zendesk audits_~_events.author_id8

    • One: Zendesk users.id

    • Seleccionar un(a) table: Zendesk users

    • Seleccionar un(a) column: User is agent? (Yes/No)

    • Path: Zendesk audits_~_events.author_id = Zendesk users.id

  • Author is agent? (Yes/No)

  • Zendesk audits tabla

    • Seleccione una definición: Exists

    • Create Path:

    • Many: Zendesk audits_~_events._id_of_parent

    • One: Zendesk audits._id

    • Seleccionar un(a) table: Zendesk audits_~_events

    • Path: Zendesk audits_~_events._id_of_parent = Zendesk audits._id

    • Filter:

    • field_name = status

    • type = Change

    • value = solved

    • Seleccione una definición: Exists

    • Seleccionar un(a) table: Zendesk audits_~_events

    • Path: Zendesk audits_~_events._id_of_parent = Zendesk audits._id

    • Filter: Author is agent? (Yes/No)

    • type = Comment

    • public = 1

  • Status changes to solved? (1/0)

  • Is agent comment? (1/0)

  • Zendesk Tickets tabla

    • Seleccione una definición: Joined Column

    • Create Path:

    • Many: Zendesk tickets.requester_id

    • One: Zendesk users.id

    • Seleccionar un(a) table: Zendesk users

    • Seleccionar un(a) column: email

    • Path: Zendesk tickets.requester_id = Zendesk users.id

    • Seleccione una definición: Joined Column

    • Seleccionar un(a) table: Zendesk users

    • Seleccionar un(a) column: role

    • Path: Zendesk tickets.requester_id = Zendesk users.id

    • Seleccione una definición: Max

    • Create Path:

    • Many: Zendesk audits.ticket_id

    • One: Zendesk tickets.id

    • Seleccionar un(a) table: Zendesk audits

    • Seleccionar un(a) column: created_at

    • Path: Zendesk audits.ticket_id = Zendesk tickets.id

    • Filter:

    • status se cambió a solved = 1

    • Seleccione una definición: Min

    • Seleccionar un(a) table: Zendesk audits

    • Seleccionar un(a) column: created_at

    • Path: Zendesk audits.ticket_id = Zendesk tickets.id

    • Filter:

    • Is agent comment? = 1

  • Requester's email

  • Requester's role

  • Ticket's latest solved date

  • First agent response date

  • Seconds to resolution

      • Column type - Same Table > Date Difference

      • Ticket's latest solved date menos created_at

  • Seconds to first response

      • Column type - Same Table > Date Difference

      • First agent response date menos created_at

  • Requester's ticket number

      • Column type - Same Table > Event Number

      • Event Owner - requester_id

      • Event Rank - created_at

  • Ticket created_at (hour of day)

      • Column type - "Misma tabla > Cálculo"

      • Input columns - created_at

      • SQL Calculation - to_char(A,'HH24')::int

      • Datatype - Entero

  • Ticket created_at (day of week)

      • Column type - "Misma tabla > Cálculo"

      • Input columns - created_at

      • Calculation - to_char(A,'D')||'. '||to_char(A,'Day')

      *Datatype - String

  • customer_entity tabla

    • Seleccione una definición: Count

    • Create Path:

    • Many: Zendesk tickets.email


    • Uno: customer_entity.email

    • Seleccionar un(a) table: Zendesk tickets

    • Path: Zendesk tickets.email = customer_entity.email

    • Filter:

    • Tickets we count

  • User's lifetime number of support tickets requested

  • Has user filed a support ticket? (Yes/No)

      • Column type - "Misma tabla > Cálculo"

      • Input columns - User's lifetime number of support tickets requested

      • Calculation - case when A>0 then 'Yes' else 'No' end

      • Datatype - String

  • Zendesk Tickets tabla

    • Seleccione una definición: Joined Column
    • Seleccionar un(a) table: customer_entity
    • Seleccionar un(a) column: User's lifetime number of support tickets requested
    • Path: Zendesk tickets.email = customer_entity.email
  • Requester's lifetime number of support tickets

Métricas

  • Zendesknuevos tickets

    • Tickets we count
  • En la tabla Zendesk tickets

  • Esta métrica realiza Count

  • En la columna id

  • Ordenado por la marca de tiempo created_at

  • Filter:

  • Zendesktickets resueltos

    • Tickets we count
    • estado EN closed, solved
  • En la tabla Zendesk tickets

  • Esta métrica realiza Count

  • En la columna id

  • Ordenado por la marca de tiempo created_at

  • Filter:

  • Zendeskusuarios distintos están archivando tickets

    • Tickets we count
  • En la tabla Zendesk tickets

  • Esta métrica realiza un Recuento distinto

  • En la columna requester_id

  • Ordenado por la marca de tiempo created_at

  • Filter:

  • ZendeskTiempo promedio/medio de resolución de tickets

    • Tickets we count
    • estado EN closed, solved
  • En la tabla Zendesk tickets

  • Esta métrica realiza un Promedio (o Mediana)

  • En la columna Seconds to resolution

  • Ordenado por la marca de tiempo created_at

  • Filter:

  • ZendeskTiempo promedio/medio hasta la primera respuesta

    • Entradas que se cuentan
    • estado IN cerrado, resuelto
  • En la tabla Zendesk tickets

  • Esta métrica realiza un Promedio (o Mediana)

  • En la columna Seconds to first response

  • Ordenado por la marca de tiempo created_at

  • Filter:

NOTE
Asegúrese de agregar todas las columnas nuevas como dimensiones a las métricas antes de crear nuevos informes.

Informes

  • New/Open/Pending tickets

    • Metric: New Tickets
    • Filter:
    • estado EN new, open, pending
  • Métrica A: New tickets

  • Time period: All time

  • Interval: None

  • Chart Type: Scalar

  • Closed/Solved tickets

    • Metric: New Tickets
    • Filter:
    • estado EN solved, closed
  • Métrica A: New tickets

  • Time period: All time

  • Interval: None

  • Chart Type: Scalar

  • Average time to first response

    • Metric: Average time to first response
  • Métrica A: Average time to first response

  • Time period: All time

  • Interval: None

  • Chart Type: Scalar

  • Average time to resolution

    • Metric: Average time to resolution
    • Filter:
    • estado EN solved, closed
  • Métrica A: Average time to resolution

  • Time period: All time

  • Interval: None

  • Chart Type: Scalar

  • Tickets by status

    • Metric: New Tickets
  • Métrica A: New tickets

  • Time period: All time

  • Interval: Monthly

  • Group by: status

  • Chart Type: Stacked Column

  • Number of new and solved tickets

    • Metric: New Tickets

    • Metric: New Tickets

  • Métrica A: New tickets

  • Métrica B: Solved tickets

  • Time period: All time

  • Interval: Monthly

  • Chart Type: Line

  • Time to first response

    • Metric: Average time to first response
  • Métrica A: Average time to first response

  • Time period: All time

  • Interval: Monthly

  • Chart Type: Column

  • Time to resolution

    • Metric: Average time to resolution
    • Filter:
    • estado EN solved, closed
  • Métrica A: Average time to resolution

  • Time period: All time

  • Interval: Monthly

  • Chart Type: Column

  • Distinct users filing tickets

    • Metric: Distinct users filing tickets
  • Métrica A: Distinct users filing tickets

  • Time period: All time

  • Interval: Monthly

  • Chart Type: Column

  • Peak ticket days

    • Metric: New Tickets
  • Métrica A: New tickets

  • Time period: All time

  • Interval: None

  • Group by: Ticket created_at (day of week)

  • Chart Type: Pie

  • Peak ticket hours

    • Metric:New Tickets

    • Show top/bottom: Top 100% sorted by created_at (hour of the day)

  • Métrica A: New tickets

  • Time period: All time

  • Interval: None

  • Group by: Ticket created_at (hour of the day)

  • Chart Type: Pie

  • Avg LTV of users who have and have not filed tickets

    • Metric: Average lifetime revenue
  • Métrica A: Average lifetime revenue

  • Time period: All time

  • Interval: Monthly

  • Group by: User has filed a support ticket?

  • Chart Type: Column

  • Number of new users who have and have not filed tickets


    • Métrica: Users
  • Métrica A: New users

  • Time period: All time

  • Interval: Monthly

  • Group by: User has filed a support ticket?

  • Chart Type: Column

recommendation-more-help
e1f8a7e8-8cc7-4c99-9697-b1daa1d66dbc