Provide dataflow details

The Dataflow detail page allows you to select whether you want to use an existing dataset or a new dataset. During this process, you can also configure settings for Profile dataset, Error diagnostics, Partial ingestion, and Alerts.

dataflow-detail

Use an existing dataset

To ingest data into an existing dataset, select Existing dataset. You can either retrieve an existing dataset using the Advanced search option or by scrolling through the list of existing datasets in the dropdown menu. Once you have selected a dataset, provide a name and a description for your dataflow.

existing-dataset

Use a new dataset

To ingest into a new dataset, select New dataset and then provide an output dataset name and an optional description. Next, select a schema to map to using the Advanced search option or by scrolling through the list of existing schemas in the dropdown menu. Once you have selected a schema, provide a name and a description for your dataflow.

new-dataset

Enable Profile and error diagnostics

Next, select the Profile dataset toggle to enable your dataset for Profile. This allows you to create a holistic view of an entity’s attributes and behaviors. Data from all Profile-enabled datasets will be included in Profile and changes are applied when you save your dataflow.

Error diagnostics enables detailed error message generation for any erroneous records that occur in your dataflow, while Partial ingestion allows you to ingest data containing errors, up to a certain threshold that you manually define. See the partial batch ingestion overview for more information.

profile-and-errors

Enable alerts

You can enable alerts to receive notifications on the status of your dataflow. Select an alert from the list to subscribe to receive notifications on the status of your dataflow. For more information on alerts, see the guide on subscribing to sources alerts using the UI.

When you are finished providing details to your dataflow, select Next.

alerts

Map data fields to an XDM schema

IMPORTANT
You cannot map any dynamic key-pair values as an object from OneTrust to Experience Platform and must specify those keys in the target schema in order to map your data during ingestion.

The Mapping step appears, providing you with an interface to map the source fields from your source schema to their appropriate target XDM fields in the target schema.

Experience Platform provides intelligent recommendations for auto-mapped fields based on the target schema or dataset that you selected. You can manually adjust mapping rules to suit your use cases. Based on your needs, you can choose to map fields directly, or use data prep functions to transform source data to derive computed or calculated values. For comprehensive steps on using the mapper interface and calculated fields, see the Data Prep UI guide.

Once your source data is successfully mapped, select Next.

mapping

Schedule ingestion runs

The Scheduling step appears, allowing you to configure an ingestion schedule to automatically ingest the selected source data using the configured mappings. By default, scheduling is set to Once. To adjust your ingestion frequency, select Frequency and then select an option from the dropdown menu.

TIP
Interval and backfill are not visible during a one-time ingestion.

scheduling

If you set your ingestion frequency to Minute, Hour, Day, or Week, then you must set an interval to establish a set time frame between every ingestion. For example, an ingestion frequency set to Day and an interval set to 15 means that your dataflow is scheduled to ingest data every 15 days.

During this step, you can also enable backfill and define a column for the incremental ingestion of data. Backfill is used to ingest historical data, while the column you define for incremental ingestion allows new data to be differentiated from existing data.

See the table below for more information on scheduling configurations.

Scheduling configurationDescription
Frequency

Configure frequency to indicate how often the dataflow should run. You can set your frequency to:

  • Once: Set your frequency to once to create a one-time ingestion. Configurations for interval and backfill are unavailable when creating a one-time ingestion dataflow. By default, the scheduling frequency is set to once.
  • Minute: Set your frequency to minute to schedule your dataflow to ingest data on a per-minute basis.
  • Hour: Set your frequency to hour to schedule your dataflow to ingest data on a per-hour basis.
  • Day: Set your frequency to day to schedule your dataflow to ingest data on a per-day basis.
  • Week: Set your frequency to week to schedule your dataflow to ingest data on a per-week basis.
Interval

Once you select a frequency, you can then configure the interval setting to establish the time frame between every ingestion. For example, if you set your frequency to day and configure the interval to 15, then your dataflow will run every 15 days. You cannot set the interval to zero. The minimum accepted interval value for each frequency is as follows:

  • Once: n/a
  • Minute: 15
  • Hour: 1
  • Day: 1
  • Week: 1
Start TimeThe timestamp for the projected run, presented in UTC time zone.
BackfillBackfill determines what data is initially ingested. If backfill is enabled, all current files in the specified path will be ingested during the first scheduled ingestion. If backfill is disabled, only the files that are loaded in between the first run of ingestion and the start time will be ingested. Files loaded prior to the start time will not be ingested.
Load incremental data byAn option with a filtered set of source schema fields of type, date, or time. The field that you select for Load incremental data by must have its date-time values in UTC timezone in order to correctly load incremental data. All table-based batch sources pick incremental data by comparing a delta column time stamp value to the corresponding flow run window UTC time, and then copying the data from the source, if any new data is found within the UTC time window.

backfill