다음을 사용하여 모델 교육 및 평가 Sensei Machine Learning API

마지막 업데이트: 2023-05-24
  • 작성 대상:
  • User
    Developer

이 자습서에서는 API 호출을 사용하여 모델을 만들고, 교육하고, 평가하는 방법을 보여줍니다. 을(를) 참조하십시오 이 문서 API 설명서의 세부 목록을 참조하십시오.

사전 요구 사항

다음 API를 사용하여 패키지된 레시피 가져오기 API를 사용하여 모델을 교육하고 평가하는 데 필요한 엔진 생성.

다음 Experience Platform API 인증 자습서 API 호출을 시작합니다.

이제 자습서에서 다음 값을 가져야 합니다.

  • {ACCESS_TOKEN}: 인증 후 제공된 특정 전달자 토큰 값입니다.

  • {ORG_ID}: 고유한 Adobe Experience Platform 통합에서 찾은 조직 자격 증명입니다.

  • {API_KEY}: 고유한 Adobe Experience Platform 통합에서 찾은 특정 API 키 값.

  • 지능형 서비스의 도커 이미지에 대한 링크

API 워크플로우

교육용 실험 실행을 만들기 위해 API를 사용할 예정입니다. 이 자습서에서는 엔진, 인스턴스 및 실험 끝점에 중점을 둡니다. 다음 차트는 세 가지 간의 관계를 간략하게 설명하고 실행 및 모델에 대한 개념도 소개합니다.

노트

용어 "엔진", "MLInstance", "MLService", "실험" 및 "모델"은 UI에서 다른 용어로 지칭됩니다. UI에서 가져오는 경우 다음 표에서 차이점을 매핑합니다.

UI 용어 API 용어
레시피 엔진
모델 MLInstance
교육 실행 실험
서비스 MLSservice

인스턴스 만들기

다음 요청을 사용하여 MLInstance를 만들 수 있습니다. 다음을 사용하게 됩니다. {ENGINE_ID} 에서 엔진을 만들 때 반환됨 API를 사용하여 패키지된 레시피 가져오기 튜토리얼.

요청

curl -X POST \
  https://platform.adobe.io/data/sensei/mlInstances \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json' \
  -H 'x-api-key: {API_KEY}' \
  -H 'x-gw-ims-org-id: {ORG_ID}' \
  -d `{JSON_PAYLOAD}`

{ACCESS_TOKEN}: 인증 후 제공된 특정 전달자 토큰 값입니다.
{ORG_ID}: 고유한 Adobe Experience Platform 통합에서 찾은 조직 자격 증명입니다.
{API_KEY}: 고유한 Adobe Experience Platform 통합에서 찾은 특정 API 키 값.
{JSON_PAYLOAD}: MLInstance 구성 자습서에서 사용하는 예는 다음과 같습니다.

{
    "name": "Retail - Instance",
    "description": "Instance for ML Instance",
    "engineId": "{ENGINE_ID}",
    "createdBy": {
        "displayName": "John Doe",
        "userId": "johnd"
    },
    "tags": {
        "purpose": "tutorial"
    },
    "tasks": [
        {
            "name": "train",
            "parameters": [
                {
                    "key": "numFeatures",
                    "value": "10"
                },
                {
                    "key": "maxIter",
                    "value": "2"
                },
                {
                    "key": "regParam",
                    "value": "0.15"
                },
                {
                    "key": "trainingDataLocation",
                    "value": "sample_training_data.csv"
                }
            ]
        },
        {
            "name": "score",
            "parameters": [
                {
                    "key": "scoringDataLocation",
                    "value": "sample_scoring_data.csv"
                },
                {
                    "key": "scoringResultsLocation",
                    "value": "scoring_results.net"
                }
            ]
        }
    ]
}
노트

다음에서 {JSON_PAYLOAD}, 에서는 교육 및 채점에 사용되는 매개 변수를 정의합니다. tasks 배열입니다. 다음 {ENGINE_ID} 는 사용하려는 엔진의 ID이고 tag 필드는 인스턴스를 식별하는 데 사용되는 선택적 매개 변수입니다.

응답에는 {INSTANCE_ID} 생성된 MLInstance를 나타냅니다. 구성이 다른 여러 모델 인스턴스를 만들 수 있습니다.

응답

{
    "id": "{INSTANCE_ID}",
    "name": "Retail - Instance",
    "description": "Instance for ML Instance",
    "engineId": "{ENGINE_ID}",
    "created": "2018-21-21T11:11:11.111Z",
    "createdBy": {
        "displayName": "John Doe",
        "userId": "johnd"
    },
    "updated": "2018-21-01T11:11:11.111Z",
    "deleted": false,
    "tags": {
        "purpose": "tutorial"
    },
    "tasks": [
        {
            "name": "train",
            "parameters": [...]
        },
        {
            "name": "score",
            "parameters": [...]
        }
    ]
}

{ENGINE_ID}: MLInstance가 생성되는 엔진을 나타내는 이 ID입니다.
{INSTANCE_ID}: MLInstance를 나타내는 ID입니다.

실험 만들기

실험은 데이터 과학자가 훈련하는 동안 성과가 좋은 모델에 도달하기 위해 사용합니다. 여러 실험에는 데이터 세트, 기능, 학습 매개 변수 및 하드웨어 변경이 포함됩니다. 다음은 실험을 만드는 예제입니다.

요청

curl -X POST \
  https://platform.adobe.io/data/sensei/experiments \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=experiment.v1.json' \
  -H 'x-gw-ims-org-id: {ORG_ID}' \
  -H 'x-api-key: {API_KEY' \
  -d `{JSON PAYLOAD}`

{ORG_ID}: 고유한 Adobe Experience Platform 통합에서 찾은 조직 자격 증명입니다.
{ACCESS_TOKEN}: 인증 후 제공된 특정 전달자 토큰 값입니다.
{API_KEY}: 고유한 Adobe Experience Platform 통합에서 찾은 특정 API 키 값.
{JSON_PAYLOAD}: 만들어진 실험 개체입니다. 자습서에서 사용하는 예는 다음과 같습니다.

{
    "name": "Experiment for Retail ",
    "mlInstanceId": "{INSTANCE_ID}",
    "tags": {
        "test": "guide"
    }
}

{INSTANCE_ID}: MLInstance를 나타내는 ID입니다.

실험 생성의 응답은 다음과 같습니다.

응답

{
    "id": "{EXPERIMENT_ID}",
    "name": "Experiment for Retail",
    "mlInstanceId": "{INSTANCE_ID}",
    "created": "2018-01-01T11:11:11.111Z",
    "updated": "2018-01-01T11:11:11.111Z",
    "deleted": false,
    "tags": {
        "test": "guide"
    }
}

{EXPERIMENT_ID}: 방금 만든 실험을 나타내는 ID입니다.
{INSTANCE_ID}: MLInstance를 나타내는 ID입니다.

교육을 위해 예약된 실험 만들기

예약된 실험은 API 호출을 통해 각 단일 실험 실행을 만들 필요가 없도록 사용됩니다. 대신 실험 생성 중에 필요한 모든 매개 변수를 제공하고 각 실행은 주기적으로 생성됩니다.

예약된 실험 생성을 나타내려면 다음을 추가해야 합니다. template 섹션 을 참조하십시오. 위치 template, 실행 예약에 필요한 모든 매개 변수가 포함됩니다. tasks, (어떤 작업을 수행하는지 나타냄) schedule: 예약된 실행의 타이밍을 나타냅니다.

요청

curl -X POST \
  https://platform.adobe.io/data/sensei/experiments \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=experiment.v1.json' \
  -H 'x-gw-ims-org-id: {ORG_ID}' \
  -H 'x-api-key: {API_KEY}' \
  -d '{JSON_PAYLOAD}`

{ORG_ID}: 고유한 Adobe Experience Platform 통합에서 찾은 조직 자격 증명입니다.
{ACCESS_TOKEN}: 인증 후 제공된 특정 전달자 토큰 값입니다.
{API_KEY}: 고유한 Adobe Experience Platform 통합에서 찾은 특정 API 키 값.
{JSON_PAYLOAD}: 게시할 데이터 세트입니다. 자습서에서 사용하는 예는 다음과 같습니다.

{
    "name": "Experiment for Retail",
    "mlInstanceId": "{INSTANCE_ID}",
    "template": {
        "tasks": [{
            "name": "train",
            "parameters": [
                   {
                        "value": "1000",
                        "key": "numFeatures"
                    }
            ],
            "specification": {
                "type": "SparkTaskSpec",
                "executorCores": 5,
                "numExecutors": 5
            }
        }],
        "schedule": {
            "cron": "*/20 * * * *",
            "startTime": "2018-11-11",
            "endTime": "2019-11-11"
        }
    }
}

우리가 실험과 몸을 만들 때 {JSON_PAYLOAD}는 다음 중 하나를 포함해야 합니다. mlInstanceId 또는 mlInstanceQuery 매개 변수. 이 예에서 예약된 실험은 20분마다 실행을 호출하며 cron 매개 변수, 다음에서 시작 startTime 종료 시간: endTime.

응답

{
    "id": "{EXPERIMENT_ID}",
    "name": "Experiment for Retail",
    "mlInstanceId": "{INSTANCE_ID}",
    "created": "2018-11-11T11:11:11.111Z",
    "updated": "2018-11-11T11:11:11.111Z",
    "deleted": false,
    "workflowId": "endid123_0379bc0b_8f7e_4706_bcd9_1a2s3d4f5g_abcdf",
    "template": {
        "tasks": [
            {
                "name": "train",
                "parameters": [...],
                "specification": {
                    "type": "SparkTaskSpec",
                    "executorCores": 5,
                    "numExecutors": 5
                }
            }
        ],
        "schedule": {
            "cron": "*/20 * * * *",
            "startTime": "2018-07-04",
            "endTime": "2018-07-06"
        }
    }
}

{EXPERIMENT_ID}: 실험을 나타내는 ID입니다.
{INSTANCE_ID}: MLInstance를 나타내는 ID입니다.

교육을 위한 실험 실행 만들기

실험 엔터티가 만들어지면 아래 호출을 사용하여 교육 실행을 만들고 실행할 수 있습니다. 다음이 필요합니다. {EXPERIMENT_ID} 무엇에 대해 말하라 mode 요청 본문에서 를 트리거하려고 합니다.

요청

curl -X POST \
  https://platform.adobe.io/data/sensei/experiments/{EXPERIMENT_ID}/runs \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=experimentRun.v1.json' \
  -H 'x-gw-ims-org-id: {ORG_ID}' \
  -H 'x-api-key: {API_KEY}' \
  -d '{JSON_PAYLOAD}'

{EXPERIMENT_ID}: 타깃팅할 실험에 해당하는 ID입니다. 이는 실험을 생성할 때 응답에서 찾을 수 있습니다.
{ORG_ID}: 고유한 Adobe Experience Platform 통합에서 찾은 조직 자격 증명입니다.
{ACCESS_TOKEN}: 인증 후 제공된 특정 전달자 토큰 값입니다.
{API_KEY}: 고유한 Adobe Experience Platform 통합에서 찾은 특정 API 키 값.
{JSON_PAYLOAD}: 교육 실행을 만들려면 본문에 다음 내용을 포함해야 합니다.

{
    "mode":"Train"
}

다음을 포함하여 구성 매개 변수를 재정의할 수도 있습니다. tasks 배열:

{
   "mode":"Train",
   "tasks": [
        {
           "name": "train",
           "parameters": [
                {
                   "key": "numFeatures",
                   "value": "2"
                }
            ]
        }
    ]
}

다음 응답을 받게 되어 사용자에게 다음이 표시됩니다. {EXPERIMENT_RUN_ID} 및 아래의 구성 tasks.

응답

{
    "id": "{EXPERIMENT_RUN_ID}",
    "mode": "train",
    "experimentId": "{EXPERIMENT_ID}",
    "created": "2018-01-01T11:11:11.903Z",
    "updated": "2018-01-01T11:11:11.903Z",
    "deleted": false,
    "tasks": [
        {
            "name": "Train",
            "parameters": [...]
        }
    ]
}

{EXPERIMENT_RUN_ID}: 실험 실행을 나타내는 ID입니다.
{EXPERIMENT_ID}: 실험 실행이 진행 중인 실험을 나타내는 ID입니다.

실험 실행 상태 검색

실험 실행의 상태는 다음을 사용하여 쿼리할 수 있습니다. {EXPERIMENT_RUN_ID}.

요청

curl -X GET \
  https://platform.adobe.io/data/sensei/experiments/{EXPERIMENT_ID}/runs/{EXPERIMENT_RUN_ID}/status \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'x-gw-ims-org-id: {ORG_ID}' \
  -H 'x-api-key: {API_KEY}'

{EXPERIMENT_ID}: 실험을 나타내는 ID입니다.
{EXPERIMENT_RUN_ID}: 실험 실행을 나타내는 ID입니다.
{ACCESS_TOKEN}: 인증 후 제공된 특정 전달자 토큰 값입니다.
{ORG_ID}: 고유한 Adobe Experience Platform 통합에서 찾은 조직 자격 증명입니다.
{API_KEY}: 고유한 Adobe Experience Platform 통합에서 찾은 특정 API 키 값.

응답

GET 호출은에서 상태를 제공합니다. state 아래와 같은 매개 변수:

{
    "id": "{EXPERIMENT_ID}",
    "name": "RunStatus for experimentRunId {EXPERIMENT_RUN_ID}",
    "experimentRunId": "{EXPERIMENT_RUN_ID}",
    "deleted": false,
    "status": {
        "tasks": [
            {
                "id": "{MODEL_ID}",
                "state": "DONE",
                "tasklogs": [
                    {
                        "name": "execution",
                        "url": "https://mlbaprod1sapwd7jzid.file.core.windows.net/..."
                    },
                    {
                        "name": "stderr",
                        "url": "https://mlbaprod1sapwd7jzid.file.core.windows.net/..."
                    },
                    {
                        "name": "stdout",
                        "url": "https://mlbaprod1sapwd7jzid.file.core.windows.net/..."
                    }
                ]
            }
        ]
    }
}

{EXPERIMENT_RUN_ID}: 실험 실행을 나타내는 ID입니다.
{EXPERIMENT_ID}: 실험 실행이 진행 중인 실험을 나타내는 ID입니다.

이외에도 DONE state, 기타 상태는 다음과 같습니다.

  • PENDING
  • RUNNING
  • FAILED

자세한 내용은 아래에서 확인할 수 있습니다. tasklogs 매개 변수.

훈련된 모델 검색

교육 중에 위에서 만든 훈련된 모델을 가져오려면 다음 요청을 수행합니다.

요청

curl -X GET \
  'https://platform.adobe.io/data/sensei/models/?property=experimentRunId=={EXPERIMENT_RUN_ID}' \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'x-gw-ims-org-id: {ORG_ID}'

{EXPERIMENT_RUN_ID}: 타깃팅할 실험 실행에 해당하는 ID입니다. 실험 실행을 만들 때 응답에서 찾을 수 있습니다.
{ACCESS_TOKEN}: 인증 후 제공된 특정 전달자 토큰 값입니다.
{ORG_ID}: 고유한 Adobe Experience Platform 통합에서 찾은 조직 자격 증명입니다.

응답은 생성된 훈련된 모델을 나타냅니다.

응답

{
    "children": [
        {
            "id": "{MODEL_ID}",
            "name": "Tutorial trained Model",
            "experimentId": "{EXPERIMENT_ID}",
            "experimentRunId": "{EXPERIMENT_RUN_ID}",
            "description": "trained model for ID",
            "modelArtifactUri": "wasb://test-models@mlpreprodstorage.blob.core.windows.net/{MODEL_ID}",
            "created": "2018-01-01T11:11:11.011Z",
            "updated": "2018-01-01T11:11:11.011Z",
            "deleted": false
        }
    ],
    "_page": {
        "property": "ExperimentRunId=={EXPERIMENT_RUN_ID},deleted!=true",
        "count": 1
    }
}

{MODEL_ID}: 모델에 해당하는 ID.
{EXPERIMENT_ID}: 실험 실행이 포함된 실험에 해당하는 ID입니다.
{EXPERIMENT_RUN_ID}: 실험 실행에 해당하는 ID입니다.

예약된 실험 중지 및 삭제

다음 시간 이전에 예약된 실험의 실행을 중지하려면 endTime에 대한 DELETE 요청을 쿼리하여 이 작업을 수행할 수 있습니다. {EXPERIMENT_ID}

요청

curl -X DELETE \
  'https://platform.adobe.io/data/sensei/experiments/{EXPERIMENT_ID}' \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'x-gw-ims-org-id: {ORG_ID}'

{EXPERIMENT_ID}: 실험에 해당하는 ID.
{ACCESS_TOKEN}: 인증 후 제공된 특정 전달자 토큰 값입니다.
{ORG_ID}: 고유한 Adobe Experience Platform 통합에서 찾은 조직 자격 증명입니다.

노트

API 호출로 새 실험 실행 생성이 비활성화됩니다. 하지만 이미 실행 중인 실험 실행의 실행은 중지되지 않습니다.

다음은 실험이 성공적으로 삭제되었음을 알리는 응답입니다.

응답

{
    "title": "Success",
    "status": 200,
    "detail": "Experiment successfully deleted"
}

다음 단계

이 튜토리얼에서는 API를 사용하여 엔진, 실험, 예약된 실험 실행 및 훈련된 모델을 만드는 방법을 살펴보았습니다. 다음에서 다음 연습, 가장 성과가 좋은 훈련된 모델을 사용하여 새 데이터 세트에 점수를 매겨 예측을 수행할 수 있습니다.

이 페이지에서는