使用為模型評分 Sensei Machine Learning API

上次更新: 2023-05-25
  • 建立對象:
  • User
    Developer

本教學課程將說明如何運用API來建立實驗和執行實驗。 如需Sensei機器學習API中所有端點的清單,請參閱 本檔案.

建立已排程的實驗以進行評分

類似於訓練的已排程實驗,建立已排程實驗以進行評分也是透過包含 template 區段至body引數。 此外, name 欄位在 tasks 內文中的設定為 score.

以下範例說明如何建立實驗,從開始每20分鐘執行一次 startTime 和將執行至 endTime.

要求

curl -X POST \
  https://platform.adobe.io/data/sensei/experiments \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=experiment.v1.json' \
  -H 'x-gw-ims-org-id: {ORG_ID}' \
  -H 'x-api-key: {API_KEY}' \
  -d '{JSON_PAYLOAD}'

{ORG_ID}:您在唯一Adobe Experience Platform整合中找到的組織憑證。
{ACCESS_TOKEN}:驗證後提供的特定持有人權杖值。
{API_KEY}:您在唯一Adobe Experience Platform整合中找到的特定API金鑰值。
{JSON_PAYLOAD}:要傳送的Experiment Run物件。 我們會在教學課程中使用的範例顯示在這裡:

{
    "name": "Experiment for Retail",
    "mlInstanceId": "{INSTANCE_ID}",
    "template": {
        "tasks": [{
            "name": "score",
            "parameters": [
                {
                    "key": "modelId",
                    "value": "{MODEL_ID}"
                }
            ],
            "specification": {
                "type": "SparkTaskSpec",
                "executorCores": 5,
                "numExecutors": 5
            }
        }],
        "schedule": {
            "cron": "*/20 * * * *",
            "startTime": "2018-07-04",
            "endTime": "2018-07-06"
        }
    }
}

{INSTANCE_ID}:代表MLInstance的ID。
{MODEL_ID}:代表已訓練模型的ID。

以下是建立排程實驗後的回應。

回應

{
  "id": "{EXPERIMENT_ID}",
  "name": "Experiment for Retail",
  "mlInstanceId": "{INSTANCE_ID}",
  "created": "2018-11-11T11:11:11.111Z",
  "updated": "2018-11-11T11:11:11.111Z",
  "template": {
    "tasks": [
      {
        "name": "score",
        "parameters": [...],
        "specification": {
          "type": "SparkTaskSpec",
          "executorCores": 5,
          "numExecutors": 5
        }
      }
    ],
    "schedule": {
      "cron": "*\/20 * * * *",
      "startTime": "2018-07-04",
      "endTime": "2018-07-06"
    }
  }
}

{EXPERIMENT_ID}:代表實驗的ID。
{INSTANCE_ID}:代表MLInstance的ID。

建立評分的實驗回合

現在,有了經過訓練的模型,我們可以為評分建立實驗回合。 的值 modelId 引數為 id 引數已在上述GET模型請求中傳回。

要求

curl -X POST \
  https://platform.adobe.io/data/sensei/experiments/{EXPERIMENT_ID}/runs \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=experimentRun.v1.json' \
  -H 'x-gw-ims-org-id: {ORG_ID}' \
  -H 'x-api-key: {API_KEY}' \
  -d '{JSON_PAYLOAD}'

{ORG_ID}:您在唯一Adobe Experience Platform整合中找到的組織憑證。
{ACCESS_TOKEN}:驗證後提供的特定持有人權杖值。
{API_KEY}:您在唯一Adobe Experience Platform整合中找到的特定API金鑰值。
{EXPERIMENT_ID}:與您要鎖定之實驗相對應的ID。 這可在建立實驗時的回應中找到。
{JSON_PAYLOAD}:要發佈的資料。 我們在本教學課程中使用的範例如下:

{
   "mode":"score",
    "tasks": [
        {
            "name": "score",
            "parameters": [
                {
                    "key": "modelId",
                    "value": "{MODEL_ID}"
                }
            ]
        }
    ]
}

{MODEL_ID}:與模型相對應的ID。

建立實驗回合的回應如下所示:

回應

{
    "id": "{EXPERIMENT_RUN_ID}",
    "mode": "score",
    "experimentId": "{EXPERIMENT_ID}",
    "created": "2018-01-01T11:11:11.011Z",
    "updated": "2018-01-01T11:11:11.011Z",
    "deleted": false,
    "tasks": [
        {
            "name": "score",
            "parameters": [...]
        }
    ]
}

{EXPERIMENT_ID}:與執行所在實驗相對應的ID。
{EXPERIMENT_RUN_ID}:與您剛建立的Experiment Run相對應的ID。

擷取排程實驗執行的實驗執行狀態

若要取得排程實驗的實驗執行,查詢如下所示:

要求

curl -X GET \
  'https://platform.adobe.io/data/sensei/experiments/{EXPERIMENT_ID}/runs' \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'x-gw-ims-org-id: {ORG_ID}'

{EXPERIMENT_ID}:與執行所在實驗相對應的ID。
{ACCESS_TOKEN}:驗證後提供的特定持有人權杖值。
{ORG_ID}:您在唯一Adobe Experience Platform整合中找到的組織憑證。

由於特定實驗有多個實驗執行,因此傳回的回應將具有執行ID陣列。

回應

{
    "children": [
        {
            "id": "{EXPERIMENT_RUN_ID}",
            "experimentId": "{EXPERIMENT_ID}",
            "created": "2018-01-01T11:11:11.011Z",
            "updated": "2018-01-01T11:11:11.011Z"
        },
        {
            "id": "{EXPERIMENT_RUN_ID}",
            "experimentId": "{EXPERIMENT_ID}",
            "created": "2018-01-01T11:11:11.011Z",
            "updated": "2018-01-01T11:11:11.011Z"
        }
    ]
}

{EXPERIMENT_RUN_ID}:與實驗回合相對應的ID。
{EXPERIMENT_ID}:與執行所在實驗相對應的ID。

停止並刪除排程的實驗

如果您想要在排程實驗之前停止執行 endTime,這可透過向查詢DELETE請求來完成 {EXPERIMENT_ID}

要求

curl -X DELETE \
  'https://platform.adobe.io/data/sensei/experiments/{EXPERIMENT_ID}' \
  -H 'Authorization: Bearer {ACCESS_TOKEN}' \
  -H 'x-gw-ims-org-id: {ORG_ID}'

{EXPERIMENT_ID}:與實驗相對應的ID。
{ACCESS_TOKEN}:驗證後提供的特定持有人權杖值。
{ORG_ID}:您在唯一Adobe Experience Platform整合中找到的組織憑證。

注意

API呼叫將停用建立新的實驗執行。 但是,它不會停止執行已執行的實驗回合。

以下是「回應」,通知實驗已成功刪除。

回應

{
    "title": "Success",
    "status": 200,
    "detail": "Experiment successfully deleted"
}

本頁內容