Creare lo schema e il set di dati di vendita al dettaglio

Ultimo aggiornamento: 2023-05-24
  • Creato per:
  • Developer
    User
    Admin
    Leader

Questa esercitazione ti fornisce i prerequisiti e le risorse necessari per tutte le altre Adobe Experience Platform Data Science Workspace esercitazioni. Al termine, lo schema e i set di dati di vendita al dettaglio saranno disponibili per te e per i membri della tua organizzazione il Experience Platform.

Introduzione

Prima di avviare questa esercitazione, è necessario disporre dei seguenti prerequisiti:

Crea schema e set di dati di vendita al dettaglio

Lo schema e i set di dati di vendita al dettaglio vengono creati automaticamente utilizzando lo script di avvio fornito. Segui i passaggi seguenti nell’ordine:

Configurare i file

  1. All'interno del Experience Platform pacchetto di risorse tutorial, passa alla directory bootstrap, e aperto config.yaml utilizzando un editor di testo appropriato.

  2. Sotto Enterprise , immetti i seguenti valori:

    Enterprise:
        api_key: {API_KEY}
        org_id: {ORG_ID}
        tech_acct: {technical_account_id}
        client_secret: {CLIENT_SECRET}
        priv_key_filename: {PRIVATE_KEY}
    
  3. Modifica i valori trovati sotto Platform sezione, Esempio mostrato di seguito:

    Platform:
        platform_gateway: https://platform.adobe.io
        ims_token: {ACCESS_TOKEN}
        ingest_data: "True"
        build_recipe_artifacts: "False"
        kernel_type: Python
    
    • platform_gateway: percorso di base per le chiamate API. Non modificare questo valore.
    • ims_token: il tuo {ACCESS_TOKEN} va qui.
    • ingest_data: ai fini della presente esercitazione, imposta questo valore come "True" per creare schemi e set di dati di vendita al dettaglio. Un valore di "False" crea solo gli schemi.
    • build_recipe_artifacts: ai fini della presente esercitazione, imposta questo valore come "False" per impedire che lo script generi un artefatto di ricetta.
    • kernel_type: tipo di esecuzione dell’artefatto della ricetta. Lascia questo valore come Python se build_recipe_artifacts è impostato come "False", altrimenti specifica il tipo di esecuzione corretto.
  4. Sotto Titles , fornire le seguenti informazioni in modo appropriato per i dati di esempio di vendita al dettaglio, salvare e chiudere il file dopo le modifiche. Esempio mostrato di seguito:

    Titles:
        input_class_title: retail_sales_input_class
        input_mixin_title: retail_sales_input_mixin
        input_mixin_definition_title: retail_sales_input_mixin_definition
        input_schema_title: retail_sales_input_schema
        input_dataset_title: retail_sales_input_dataset
        file_replace_tenant_id: DSWRetailSalesForXDM0.9.9.9.json
        file_with_tenant_id: DSWRetailSales_with_tenant_id.json
        is_output_schema_different: "True"
        output_mixin_title: retail_sales_output_mixin
        output_mixin_definition_title: retail_sales_output_mixin_definition
        output_schema_title: retail_sales_output_title
        output_dataset_title: retail_sales_output_dataset
    

Eseguire lo script di avvio automatico

  1. Apri l’applicazione terminale e passa alla Experience Platform directory delle risorse del tutorial.

  2. Imposta il bootstrap come percorso di lavoro corrente ed esegui la bootstrap.py Python immettendo il comando seguente:

    python bootstrap.py
    
    NOTA

    Lo script potrebbe richiedere alcuni minuti.

Passaggi successivi

Una volta completato con successo lo script di avvio, gli schemi e i set di dati di input e output per la vendita al dettaglio possono essere visualizzati su Experience Platform. Consulta la tutorial sull’anteprima dei dati dello schema
per ulteriori informazioni.

Inoltre, hai acquisito correttamente i dati di esempio delle vendite al dettaglio in Experience Platform utilizzando lo script bootstrap fornito.

Per continuare a lavorare con i dati acquisiti:

In questa pagina