このチュートリアルでは、その他すべてに必要な前提条件とアセットについて説明します Adobe Experience Platform Data Science Workspace チュートリアル 完了したら、次のスキーマとデータセットを IMS 組織と共に使用できるようになります。
スキーマ:
データセット:
次のチュートリアルでは、カスタム Luma 購入傾向モデルを使用します。 先に進む前に 必要なアセットのダウンロード zip フォルダー。 このフォルダーには次が含まれます。
任意のチュートリアルで、独自のスキーマとデータを使用できます。 ただし、アセットで提供されているデモモデルは、適切な設定ファイルと要件ファイルが提供されていない限り、機能しません。 このデモ傾向モデルは、Luma Web データを操作するように設計されています。
モデルを作成するには、モデルのトレーニングとスコアリングに使用される Platform のデータセットが必要です。 次の Data Science Workspace コース では、Luma スキーマの作成、および購入傾向モデルで使用されるデータの取り込みに関する手順を説明します。
Recipe Builder ノートブックを実行するか、API を使用してモデルをトレーニングおよびスコアリングするには、トレーニング/スコアリングに使用するデータセットとスキーマを指定する必要があります。 次のビデオチュートリアルでは、トレーニング、スコアリング、スコアリングの結果のデータセット、および Luma 購入傾向モデルで使用するスコアリング結果スキーマの設定手順を説明します。
このチュートリアルでは、Luma 傾向モデルに必要なスキーマとデータセットを正常に作成しました。 これで、次のチュートリアルに進み、を使用してモデルを作成する準備が整いました。 recipe builder ノートブック チュートリアル
さらに、提供された Exploratory Data Analysis(EDA) ノートブックを使用して、データを調査できます。 このノートブックは、Luma データのパターンを理解し、データの整合性を確認し、予測傾向モデルに関連するデータを要約するのに役立ちます。 Exploratory Data Analysis の詳細については、 EDA ドキュメント.